메뉴 건너뛰기




Volumn 297, Issue 1, 2014, Pages 26-35

Perspectives in multiphasic osteochondral tissue engineering

Author keywords

Osteochondral; Stem cell; Tissue engineering

Indexed keywords

ALGINIC ACID; BONE MORPHOGENETIC PROTEIN; CALCIUM PHOSPHATE; CHITOSAN; GELATIN; HYALURONIC ACID; HYDROXYAPATITE; POLYCAPROLACTONE; POLYLACTIC ACID; TANTALUM; TRANSFORMING GROWTH FACTOR BETA;

EID: 84890429237     PISSN: 19328486     EISSN: 19328494     Source Type: Journal    
DOI: 10.1002/ar.22795     Document Type: Article
Times cited : (88)

References (84)
  • 2
    • 70350496341 scopus 로고    scopus 로고
    • Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits
    • Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI. 2009. Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng Part A 15:2595-2604.
    • (2009) Tissue Eng Part A , vol.15 , pp. 2595-2604
    • Ahn, J.H.1    Lee, T.H.2    Oh, J.S.3    Kim, S.Y.4    Kim, H.J.5    Park, I.K.6    Choi, B.S.7    Im, G.I.8
  • 5
    • 33847621211 scopus 로고    scopus 로고
    • FT-IR imaging of native and tissue-engineered bone and cartilage
    • Boskey A, Pleshko Camacho N. 2007. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465-2478.
    • (2007) Biomaterials , vol.28 , pp. 2465-2478
    • Boskey, A.1    Pleshko Camacho, N.2
  • 6
    • 0031608434 scopus 로고    scopus 로고
    • Articular cartilage: tissue design and chondrocyte-matrix interactions
    • Buckwalter JA, Mankin HJ. 1998. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477-486.
    • (1998) Instr Course Lect , vol.47 , pp. 477-486
    • Buckwalter, J.A.1    Mankin, H.J.2
  • 7
    • 84862789329 scopus 로고    scopus 로고
    • Osteochondral regeneration by a bilayered construct in a cell-free or cell-based approach
    • Cao Z, Hou S, Sun D, Wang X, Tang J. 2012. Osteochondral regeneration by a bilayered construct in a cell-free or cell-based approach. Biotechnol Lett 34:1151-1157.
    • (2012) Biotechnol Lett , vol.34 , pp. 1151-1157
    • Cao, Z.1    Hou, S.2    Sun, D.3    Wang, X.4    Tang, J.5
  • 9
    • 84862832765 scopus 로고    scopus 로고
    • The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit
    • Chang N-J, Lin C-C, Li C-F, Wang D-A, Issariyaku N, Yeh M-L. 2012. The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 33:3153-3163.
    • (2012) Biomaterials , vol.33 , pp. 3153-3163
    • Chang, N.-J.1    Lin, C.-C.2    Li, C.-F.3    Wang, D.-A.4    Issariyaku, N.5    Yeh, M.-L.6
  • 10
    • 56449083886 scopus 로고    scopus 로고
    • The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture
    • Chen HC, Chang YH, Chuang CK, Lin CY, Sung LY, Wang YH, Hu YC. 2009. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 30:674-681.
    • (2009) Biomaterials , vol.30 , pp. 674-681
    • Chen, H.C.1    Chang, Y.H.2    Chuang, C.K.3    Lin, C.Y.4    Sung, L.Y.5    Wang, Y.H.6    Hu, Y.C.7
  • 11
    • 79955758751 scopus 로고    scopus 로고
    • Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds
    • Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J. 2011. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793-4805.
    • (2011) Biomaterials , vol.32 , pp. 4793-4805
    • Chen, J.1    Chen, H.2    Li, P.3    Diao, H.4    Zhu, S.5    Dong, L.6    Wang, R.7    Guo, T.8    Zhao, J.9    Zhang, J.10
  • 12
    • 79951673160 scopus 로고    scopus 로고
    • Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold
    • Chen W-C, Yao C-L, Wei Y-H, Chu I-M. 2011b. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology 63:13-23.
    • (2011) Cytotechnology , vol.63 , pp. 13-23
    • Chen, W.-C.1    Yao, C.-L.2    Wei, Y.-H.3    Chu, I.-M.4
  • 13
    • 77952326646 scopus 로고    scopus 로고
    • Comparison of articular cartilage repair by autologous chondrocytes with and without in vitro cultivation
    • Chiang H, Liao C-J, Wang Y-H, Huang H-Y, Chen C-N, Hsieh C-H, et al. 2010. Comparison of articular cartilage repair by autologous chondrocytes with and without in vitro cultivation. Tissue Eng Part C 16:291-300.
    • (2010) Tissue Eng Part C , vol.16 , pp. 291-300
    • Chiang, H.1    Liao, C.-J.2    Wang, Y.-H.3    Huang, H.-Y.4    Chen, C.-N.5    Hsieh, C.-H.6
  • 14
    • 79953318983 scopus 로고    scopus 로고
    • Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs
    • Cui W, Wang Q, Chen G, Zhou S, Chang Q, Zuo Q, Ren K, Fan W. 2011. Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng 111:493-500.
    • (2011) J Biosci Bioeng , vol.111 , pp. 493-500
    • Cui, W.1    Wang, Q.2    Chen, G.3    Zhou, S.4    Chang, Q.5    Zuo, Q.6    Ren, K.7    Fan, W.8
  • 15
    • 84903819674 scopus 로고    scopus 로고
    • Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit
    • Deng T, Lv J, Pang J, Liu B, Ke J. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med, in press.
    • J Tissue Eng Regen Med, in press.
    • Deng, T.1    Lv, J.2    Pang, J.3    Liu, B.4    Ke, J.5
  • 16
    • 77954626361 scopus 로고    scopus 로고
    • Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals
    • Dormer NH, Singh M, Wang L, Berkland CJ, Detamore MS. 2010. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng 38:2167-2182.
    • (2010) Ann Biomed Eng , vol.38 , pp. 2167-2182
    • Dormer, N.H.1    Singh, M.2    Wang, L.3    Berkland, C.J.4    Detamore, M.S.5
  • 17
    • 81855176136 scopus 로고    scopus 로고
    • Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals
    • Dormer NH, Singh M, Zhao L, Mohan N, Berkland CJ, Detamore MS. 2012. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J Biomed Mater Res Part A 100:162-170.
    • (2012) J Biomed Mater Res Part A , vol.100 , pp. 162-170
    • Dormer, N.H.1    Singh, M.2    Zhao, L.3    Mohan, N.4    Berkland, C.J.5    Detamore, M.S.6
  • 18
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • Drury JL, Mooney DJ. 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337-4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 24
    • 78650272820 scopus 로고    scopus 로고
    • Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation
    • Grafahrend D, Heffels KH, Beer MV, Gasteier P, Moller M, Boehm G, Dalton PD, Groll J. 2011. Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10:67-73.
    • (2011) Nat Mater , vol.10 , pp. 67-73
    • Grafahrend, D.1    Heffels, K.H.2    Beer, M.V.3    Gasteier, P.4    Moller, M.5    Boehm, G.6    Dalton, P.D.7    Groll, J.8
  • 26
    • 84875378486 scopus 로고    scopus 로고
    • Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage-a 3D finite element study of stresses and strains in human knee joint
    • Halonen KS, Mononen ME, Jurvelin JS, Toyras J, Korhonen RK. 2013. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage-a 3D finite element study of stresses and strains in human knee joint. J Biomech 46:1184-1192.
    • (2013) J Biomech , vol.46 , pp. 1184-1192
    • Halonen, K.S.1    Mononen, M.E.2    Jurvelin, J.S.3    Toyras, J.4    Korhonen, R.K.5
  • 27
    • 77953310224 scopus 로고    scopus 로고
    • Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study
    • Hangody L, Dobos J, Balo E, Panics G, Hangody LR, Berkes I. 2010. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med 38:1125-1133.
    • (2010) Am J Sports Med , vol.38 , pp. 1125-1133
    • Hangody, L.1    Dobos, J.2    Balo, E.3    Panics, G.4    Hangody, L.R.5    Berkes, I.6
  • 28
    • 23944498343 scopus 로고    scopus 로고
    • Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth
    • He W, Ma Z, Yong T, Teo WE, Ramakrishna S. 2005. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26:7606-7615.
    • (2005) Biomaterials , vol.26 , pp. 7606-7615
    • He, W.1    Ma, Z.2    Yong, T.3    Teo, W.E.4    Ramakrishna, S.5
  • 30
    • 77950792851 scopus 로고    scopus 로고
    • The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model
    • Ho ST, Hutmacher DW, Ekaputra AK, Hitendra D, Hui JH. 2010. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A 16:1123-1141.
    • (2010) Tissue Eng Part A , vol.16 , pp. 1123-1141
    • Ho, S.T.1    Hutmacher, D.W.2    Ekaputra, A.K.3    Hitendra, D.4    Hui, J.H.5
  • 31
    • 84877928878 scopus 로고    scopus 로고
    • Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects
    • Hui JH, Ren X, Afizah MH, Chian KS, Mikos AG. 2013. Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin Orthop Relat Res 471:1174-1185.
    • (2013) Clin Orthop Relat Res , vol.471 , pp. 1174-1185
    • Hui, J.H.1    Ren, X.2    Afizah, M.H.3    Chian, K.S.4    Mikos, A.G.5
  • 33
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher DW. 2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529-2543.
    • (2000) Biomaterials , vol.21 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 34
    • 77950854817 scopus 로고    scopus 로고
    • A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study
    • Im GI, Ahn JH, Kim SY, Choi BS, Lee SW. 2010. A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng Part A 16:1189-1200.
    • (2010) Tissue Eng Part A , vol.16 , pp. 1189-1200
    • Im, G.I.1    Ahn, J.H.2    Kim, S.Y.3    Choi, B.S.4    Lee, S.W.5
  • 38
    • 65549090503 scopus 로고    scopus 로고
    • The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds
    • Keeney M, Pandit A. 2009. The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15:55-73.
    • (2009) Tissue Eng Part B Rev , vol.15 , pp. 55-73
    • Keeney, M.1    Pandit, A.2
  • 39
    • 84872539100 scopus 로고    scopus 로고
    • The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior
    • Khoshgoftar M, Wilson W, Ito K, van Donkelaar CC. 2013. The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior. Biomech Model Mechanobiol 12:43-54.
    • (2013) Biomech Model Mechanobiol , vol.12 , pp. 43-54
    • Khoshgoftar, M.1    Wilson, W.2    Ito, K.3    van Donkelaar, C.C.4
  • 41
    • 0031010088 scopus 로고    scopus 로고
    • Specimen preparation and quantification of collagen birefringence in unstained sections of articular cartilage using image analysis and polarizing light microscopy
    • Kiraly K, Hyttinen MM, Lapvetelainen T, Elo M, Kiviranta I, Dobai J, Modis L, Helminen HJ, Arokoski JP. 1997. Specimen preparation and quantification of collagen birefringence in unstained sections of articular cartilage using image analysis and polarizing light microscopy. Histochem J 29:317-327.
    • (1997) Histochem J , vol.29 , pp. 317-327
    • Kiraly, K.1    Hyttinen, M.M.2    Lapvetelainen, T.3    Elo, M.4    Kiviranta, I.5    Dobai, J.6    Modis, L.7    Helminen, H.J.8    Arokoski, J.P.9
  • 42
    • 70349954683 scopus 로고    scopus 로고
    • Tissue engineering of articular cartilage with biomimetic zones
    • Klein TJ, Malda J, Sah RL, Hutmacher DW. 2009. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B 15:143-157.
    • (2009) Tissue Eng Part B , vol.15 , pp. 143-157
    • Klein, T.J.1    Malda, J.2    Sah, R.L.3    Hutmacher, D.W.4
  • 43
    • 79959458741 scopus 로고    scopus 로고
    • Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial
    • Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M. 2011. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39:1180-1190.
    • (2011) Am J Sports Med , vol.39 , pp. 1180-1190
    • Kon, E.1    Delcogliano, M.2    Filardo, G.3    Busacca, M.4    Di Martino, A.5    Marcacci, M.6
  • 44
    • 77957105942 scopus 로고    scopus 로고
    • Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model
    • Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G, Martin I, Marcacci M. 2010a. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220.
    • (2010) BMC Musculoskelet Disord , vol.11 , pp. 220
    • Kon, E.1    Filardo, G.2    Delcogliano, M.3    Fini, M.4    Salamanna, F.5    Giavaresi, G.6    Martin, I.7    Marcacci, M.8
  • 47
    • 84862805301 scopus 로고    scopus 로고
    • Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2
    • Lee H-R, Park KM, Joung YK, Park KD, Do SH. 2012. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release 159:332-337.
    • (2012) J Control Release , vol.159 , pp. 332-337
    • Lee, H.-R.1    Park, K.M.2    Joung, Y.K.3    Park, K.D.4    Do, S.H.5
  • 54
    • 34248572703 scopus 로고    scopus 로고
    • Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering (SAXS)
    • Moger CJ, Barrett R, Bleuet P, Bradley DA, Ellis RE, Green EM, Knapp KM, Muthuvelu P, Winlove CP. 2007. Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering (SAXS). Osteoarthr Cartil 15:682-687.
    • (2007) Osteoarthr Cartil , vol.15 , pp. 682-687
    • Moger, C.J.1    Barrett, R.2    Bleuet, P.3    Bradley, D.A.4    Ellis, R.E.5    Green, E.M.6    Knapp, K.M.7    Muthuvelu, P.8    Winlove, C.P.9
  • 55
    • 80155149820 scopus 로고    scopus 로고
    • Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface
    • Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS. 2011. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17:2845-2855.
    • (2011) Tissue Eng Part A , vol.17 , pp. 2845-2855
    • Mohan, N.1    Dormer, N.H.2    Caldwell, K.L.3    Key, V.H.4    Berkland, C.J.5    Detamore, M.S.6
  • 57
    • 84874739666 scopus 로고    scopus 로고
    • The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture
    • Nagel T, Kelly DJ. 2013. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture. Tissue Eng Part A 19:824-833.
    • (2013) Tissue Eng Part A , vol.19 , pp. 824-833
    • Nagel, T.1    Kelly, D.J.2
  • 59
    • 79960836277 scopus 로고    scopus 로고
    • Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel
    • Nguyen LH, Kudva AK, Saxena NS, Roy K. 2011. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 32:6946-6952.
    • (2011) Biomaterials , vol.32 , pp. 6946-6952
    • Nguyen, L.H.1    Kudva, A.K.2    Saxena, N.S.3    Roy, K.4
  • 60
    • 56749179723 scopus 로고    scopus 로고
    • Bilayered scaffolds for osteochondral tissue engineering
    • O'Shea TM, Miao X. 2008. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B 14:447-464.
    • (2008) Tissue Eng Part B , vol.14 , pp. 447-464
    • O'Shea, T.M.1    Miao, X.2
  • 61
    • 72249110254 scopus 로고    scopus 로고
    • Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model
    • Oshima Y, Harwood FL, Coutts RD, Kubo T, Amiel D. 2009. Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model. Tissue Eng Part C 15:595-604.
    • (2009) Tissue Eng Part C , vol.15 , pp. 595-604
    • Oshima, Y.1    Harwood, F.L.2    Coutts, R.D.3    Kubo, T.4    Amiel, D.5
  • 65
    • 67349212861 scopus 로고    scopus 로고
    • Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs
    • Pei M, He F, Boyce BM, Kish VL. 2009. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage 17:714-722.
    • (2009) Osteoarthritis Cartilage , vol.17 , pp. 714-722
    • Pei, M.1    He, F.2    Boyce, B.M.3    Kish, V.L.4
  • 66
    • 77954708558 scopus 로고    scopus 로고
    • Failure of xenoimplantation using porcine synovium-derived stem cell-based cartilage tissue constructs for the repair of rabbit osteochondral defects
    • Pei M, Yan Z, Shoukry M, Boyce BM. 2010. Failure of xenoimplantation using porcine synovium-derived stem cell-based cartilage tissue constructs for the repair of rabbit osteochondral defects. J Orthop Res 28:1064-1070.
    • (2010) J Orthop Res , vol.28 , pp. 1064-1070
    • Pei, M.1    Yan, Z.2    Shoukry, M.3    Boyce, B.M.4
  • 68
    • 84864413986 scopus 로고    scopus 로고
    • Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system
    • Re'em T, Witte F, Willbold E, Ruvinov E, Cohen S. 2012. Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8:3283-3293.
    • (2012) Acta Biomater , vol.8 , pp. 3283-3293
    • Re'em, T.1    Witte, F.2    Willbold, E.3    Ruvinov, E.4    Cohen, S.5
  • 70
    • 84879325968 scopus 로고    scopus 로고
    • Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems
    • Santo VE, Gomes ME, Mano JF, Reis RL. 2013a. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 19:308-326.
    • (2013) Tissue Eng Part B Rev , vol.19 , pp. 308-326
    • Santo, V.E.1    Gomes, M.E.2    Mano, J.F.3    Reis, R.L.4
  • 71
    • 84877969932 scopus 로고    scopus 로고
    • Controlled release strategies for bone, cartilage, and osteochondral engineering-Part II: challenges on the evolution from single to multiple bioactive factor delivery
    • Santo VE, Gomes ME, Mano JF, Reis RL. 2013b. Controlled release strategies for bone, cartilage, and osteochondral engineering-Part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev 19:327-352.
    • (2013) Tissue Eng Part B Rev , vol.19 , pp. 327-352
    • Santo, V.E.1    Gomes, M.E.2    Mano, J.F.3    Reis, R.L.4
  • 73
    • 0031194440 scopus 로고    scopus 로고
    • Depth-dependent confined compression modulus of full-thickness bovine articular cartilage
    • Schinagl RM, Gurskis D, Chen AC, Sah RL. 1997. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499-506.
    • (1997) J Orthop Res , vol.15 , pp. 499-506
    • Schinagl, R.M.1    Gurskis, D.2    Chen, A.C.3    Sah, R.L.4
  • 74
    • 84873156275 scopus 로고    scopus 로고
    • Engineering osteochondral constructs through spatial regulation of endochondral ossification
    • Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ. 2013. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 9:5484-5492.
    • (2013) Acta Biomater , vol.9 , pp. 5484-5492
    • Sheehy, E.J.1    Vinardell, T.2    Buckley, C.T.3    Kelly, D.J.4
  • 75
    • 56749102639 scopus 로고    scopus 로고
    • Role of cartilage collagen fibrils networks in knee joint biomechanics under compression
    • Shirazi R, Shirazi-Adl A, Hurtig M. 2008. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 41:3340-3348.
    • (2008) J Biomech , vol.41 , pp. 3340-3348
    • Shirazi, R.1    Shirazi-Adl, A.2    Hurtig, M.3
  • 76
  • 78
    • 77957325022 scopus 로고    scopus 로고
    • The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs
    • Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C. 2010. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31:8964-8973.
    • (2010) Biomaterials , vol.31 , pp. 8964-8973
    • Wang, W.1    Li, B.2    Yang, J.3    Xin, L.4    Li, Y.5    Yin, H.6    Qi, Y.7    Jiang, Y.8    Ouyang, H.9    Gao, C.10
  • 79
    • 34447269938 scopus 로고    scopus 로고
    • Microfracture: indications, technique, and results
    • Williams RJ, III Harnly HW. 2007 Microfracture: indications, technique, and results. Instr Course Lect 56:419-428.
    • (2007) Instr Course Lect , vol.56 , pp. 419-428
    • Williams, R.J.1    III Harnly, H.W.2
  • 80
    • 77954133820 scopus 로고    scopus 로고
    • Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): in vivo performance in adult rabbits
    • Xie J, Han Z, Naito M, Maeyama A, Kim SH, Kim YH, Matsuda T. 2010. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): in vivo performance in adult rabbits. J Biomed Mater Res Part B Appl Biomater 94:80-88.
    • (2010) J Biomed Mater Res Part B Appl Biomater , vol.94 , pp. 80-88
    • Xie, J.1    Han, Z.2    Naito, M.3    Maeyama, A.4    Kim, S.H.5    Kim, Y.H.6    Matsuda, T.7
  • 81
    • 77952689542 scopus 로고    scopus 로고
    • Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model
    • Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z. 2010. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res Part A 94:259-270.
    • (2010) J Biomed Mater Res Part A , vol.94 , pp. 259-270
    • Xue, D.1    Zheng, Q.2    Zong, C.3    Li, Q.4    Li, H.5    Qian, S.6    Zhang, B.7    Yu, L.8    Pan, Z.9
  • 82
    • 84862955711 scopus 로고    scopus 로고
    • Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model
    • Yang Q, Peng J, Lu SB, Guo QY, Zhao B, Zhang L, Wang AY, Xu WJ, Xia Q, Ma XL, Hu YC, Xu BS. 2011. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J 124:3930-3938.
    • (2011) Chin Med J , vol.124 , pp. 3930-3938
    • Yang, Q.1    Peng, J.2    Lu, S.B.3    Guo, Q.Y.4    Zhao, B.5    Zhang, L.6    Wang, A.Y.7    Xu, W.J.8    Xia, Q.9    Ma, X.L.10    Hu, Y.C.11    Xu, B.S.12
  • 83
    • 79955954664 scopus 로고    scopus 로고
    • NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle
    • Zhu S, Zhang B, Man C, Ma Y, Hu J. 2011. NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle. Osteoarthritis Cartilage 19:743-750.
    • (2011) Osteoarthritis Cartilage , vol.19 , pp. 743-750
    • Zhu, S.1    Zhang, B.2    Man, C.3    Ma, Y.4    Hu, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.