메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 14-29

Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data

Author keywords

Clustering; Finite mixture model; Longitudinal profiles; Mixed effects model; Time course gene expression

Indexed keywords

CLUSTER ANALYSIS; GRAPHICAL USER INTERFACES; MIXTURES;

EID: 84888857815     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2013.04.001     Document Type: Article
Times cited : (40)

References (57)
  • 4
    • 26844458204 scopus 로고    scopus 로고
    • Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments
    • DOI 10.1191/1471082X05st096oa
    • G. Celeux, O. Martin, and C. Lavergne Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments Statistical Modelling 5 2005 243 267 (Pubitemid 41461724)
    • (2005) Statistical Modelling , vol.5 , Issue.3 , pp. 243-267
    • Celeux, G.1    Martin, O.2    Lavergne, C.3
  • 5
    • 68349141952 scopus 로고    scopus 로고
    • Curve-based clustering of time course gene expression data using self-organizing maps
    • X. Chen Curve-based clustering of time course gene expression data using self-organizing maps Journal of Bioinformatics and Computational Biology 7 2009 645 661
    • (2009) Journal of Bioinformatics and Computational Biology , vol.7 , pp. 645-661
    • Chen, X.1
  • 7
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • P. Eilers, and B. Marx Flexible smoothing with B-splines and penalties Statistical Science 11 1996 89 121 (Pubitemid 126706128)
    • (1996) Statistical Science , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 10
    • 22544432531 scopus 로고    scopus 로고
    • Noise-robust soft clustering of gene expression time-course data
    • DOI 10.1142/S0219720005001375, PII S0219720005001375
    • M. Futschik, and B. Carlisle Noise-robust soft clustering of gene expression time-course data Journal of Bioinformatics and Computational Biology 3 2005 965 988 (Pubitemid 41015297)
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.4 , pp. 965-988
    • Futschik, M.E.1    Carlisle, B.2
  • 13
    • 27744581052 scopus 로고    scopus 로고
    • Finding groups in gene expression data
    • DOI 10.1155/JBB.2005.215
    • D. Hand, and N. Heard Finding groups in gene expression data Journal of Biomedicine and Biotechnology 2 2005 215 225 (Pubitemid 41627878)
    • (2005) Journal of Biomedicine and Biotechnology , vol.2005 , Issue.2 , pp. 215-225
    • Hand, D.J.1    Heard, N.A.2
  • 14
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J. Hartigan, and M. Wong A k-means clustering algorithm Applied Statistics 28 1978 100 108
    • (1978) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 15
    • 0000563391 scopus 로고
    • Estimation of genetic parameters (abstract)
    • C. Henderson Estimation of genetic parameters (abstract) Annals of Mathematical Statistics 21 1950 309 310
    • (1950) Annals of Mathematical Statistics , vol.21 , pp. 309-310
    • Henderson, C.1
  • 16
    • 0034340248 scopus 로고    scopus 로고
    • Identifiability of Models for Clusterwise Linear Regression
    • DOI 10.1007/s003570000022
    • C. Hennig Identifiability of models for clusterwise linear regression Journal of Classification 17 2000 273 296 (Pubitemid 33229126)
    • (2000) Journal of Classification , vol.17 , Issue.2 , pp. 273-296
    • Hennig, C.1
  • 19
    • 79958192153 scopus 로고    scopus 로고
    • The hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae
    • M.J. Hickman, D. Spatt, and F. Winston The hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae Genetics 188 2011 325 338
    • (2011) Genetics , vol.188 , pp. 325-338
    • Hickman, M.J.1    Spatt, D.2    Winston, F.3
  • 21
    • 0043245795 scopus 로고    scopus 로고
    • Clustering for sparsely sampled functional data
    • DOI 10.1198/016214503000189
    • G. James, and C. Sugar Clustering for sparsely sampled functional data Journal of the American Statistical Association 98 2003 397 408 (Pubitemid 36931563)
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.462 , pp. 397-408
    • James, G.M.1    Sugar, C.A.2
  • 22
    • 77957020005 scopus 로고    scopus 로고
    • Functional cluster analysis via orthonormalized Gaussian basis expansions and its application
    • M. Kayano, K. Dozono, and S. Konishi Functional cluster analysis via orthonormalized Gaussian basis expansions and its application Journal of Classification 27 2010 211 230
    • (2010) Journal of Classification , vol.27 , pp. 211-230
    • Kayano, M.1    Dozono, K.2    Konishi, S.3
  • 23
    • 38349101892 scopus 로고    scopus 로고
    • Clustering of change patterns using Fourier coefficients
    • J. Kim, and H. Kim Clustering of change patterns using Fourier coefficients Bioinformatics 24 2008 184 191
    • (2008) Bioinformatics , vol.24 , pp. 184-191
    • Kim, J.1    Kim, H.2
  • 24
    • 58149330805 scopus 로고    scopus 로고
    • A computational approach to the functional clustering of periodic gene-expression profiles
    • B.R. Kim, L. Zhang, A. Berg, J. Fan, and R. Wu A computational approach to the functional clustering of periodic gene-expression profiles Genetics 180 2008 821 834
    • (2008) Genetics , vol.180 , pp. 821-834
    • Kim, B.R.1    Zhang, L.2    Berg, A.3    Fan, J.4    Wu, R.5
  • 26
    • 33748852396 scopus 로고    scopus 로고
    • Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae
    • DOI 10.1128/EC.00107-06
    • L.C. Lai, A.L. Kosorukoff, P.V. Burke, and K.E. Kwast Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae Eukaryotic Cell 5 2006 1468 1489 (Pubitemid 44423645)
    • (2006) Eukaryotic Cell , vol.5 , Issue.9 , pp. 1468-1489
    • Lai, L.-C.1    Kosorukoff, A.L.2    Burke, P.V.3    Kwast, K.E.4
  • 27
    • 30344444303 scopus 로고    scopus 로고
    • Classification using functional data analysis for temporal gene expression data
    • DOI 10.1093/bioinformatics/bti742
    • X. Leng, and H.G. Müller Classification using function data analysis for temporal gene expression data Bioinformatics 22 2006 68 76 (Pubitemid 43057010)
    • (2006) Bioinformatics , vol.22 , Issue.1 , pp. 68-76
    • Leng, X.1    Muller, H.-G.2
  • 30
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • DOI 10.1093/bioinformatics/btg014
    • Y. Luan, and H. Li Clustering of time-course gene expression data using a mixed-effects model with B-splines Bioinformatics 19 2003 474 482 (Pubitemid 36336513)
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 31
    • 71449124365 scopus 로고    scopus 로고
    • Functional analyses of PAU genes in Saccharomyces cerevisiae
    • Z. Luo, and H.J.J. van Vuuren Functional analyses of PAU genes in Saccharomyces cerevisiae Microbiology 155 2009 4036 4049
    • (2009) Microbiology , vol.155 , pp. 4036-4049
    • Luo, Z.1    Van Vuuren, H.J.J.2
  • 32
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • P. Ma, C. Castillo-Davis, W. Zhong, and J. Liu A data-driven clustering method for time course gene expression data Nucleic Acids Research 34 2006 1261 1269
    • (2006) Nucleic Acids Research , vol.34 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.2    Zhong, W.3    Liu, J.4
  • 33
    • 49549108208 scopus 로고    scopus 로고
    • Penalized clustering of large-scale functional data with multiple covariates
    • P. Ma, and W. Zhong Penalized clustering of large-scale functional data with multiple covariates Journal of the American Statistical Association 103 2008 625 636
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 625-636
    • Ma, P.1    Zhong, W.2
  • 35
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • G. McLachlan, R. Bean, and D. Peel A mixture model-based approach to the clustering of microarray expression data Bioinformatics 18 2002 413 422 (Pubitemid 34284942)
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 37
    • 0037469105 scopus 로고    scopus 로고
    • Modelling high - dimensional data by mixtures of factor analyzers
    • DOI 10.1016/S0167-9473(02)00183-4, PII S0167947302001834
    • G. McLachlan, D. Peel, and R. Bean Modelling high-dimensional data by mixtures of factor analyzers Computational Statistics and Data Analysis 41 2003 379 388 (Pubitemid 36065383)
    • (2003) Computational Statistics and Data Analysis , vol.41 , Issue.3-4 , pp. 379-388
    • McLachlan, G.J.1    Peel, D.2    Bean, R.W.3
  • 38
    • 33747890494 scopus 로고    scopus 로고
    • A mixture model with random-effects components for clustering correlated gene-expression profiles
    • DOI 10.1093/bioinformatics/btl165
    • S. Ng, G. McLachlan, K. Wang, L. Ben-Tovim Jones, and S. Ng A mixture model with random-effects components for clustering correlated gene-expression profiles Bioinformatics 22 2006 1745 1752 (Pubitemid 44288337)
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1745-1752
    • Ng, S.K.1    McLachlan, G.J.2    Wang, K.3    Jones, L.B.-T.4    Ng, S.-W.5
  • 39
    • 34547903866 scopus 로고    scopus 로고
    • Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA
    • DOI 10.1093/bioinformatics/btm251
    • M. Nueda, A. Conesa, J. Westerhuis, H. Hoefsloot, A. Smilde, M. Taló, and A. Ferrer Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA Bioinformatics 23 2007 1792 1800 (Pubitemid 47250312)
    • (2007) Bioinformatics , vol.23 , Issue.14 , pp. 1792-1800
    • Nueda, M.J.1    Conesa, A.2    Westerhuis, J.A.3    Hoefsloot, H.C.J.4    Smilde, A.K.5    Talon, M.6    Ferrer, A.7
  • 41
    • 33745257048 scopus 로고    scopus 로고
    • The clustering of regression models method with applications in gene expression data
    • DOI 10.1111/j.1541-0420.2005.00498.x
    • L.X. Qin, and S. Self The clustering of regression models method with applications in gene expression data Biometrics 62 2006 526 533 (Pubitemid 43926658)
    • (2006) Biometrics , vol.62 , Issue.2 , pp. 526-533
    • Qin, L.-X.1    Self, S.G.2
  • 44
    • 30044439884 scopus 로고    scopus 로고
    • A genomewide screen reveals a role of mitochondria in anaerobic uptake of sterols in yeast
    • DOI 10.1091/mbc.E05-06-0515
    • S. Reiner, D. Micolod, G. Zellnig, and R. Schneiter A genomewide screen reveals a role of mitochondria in anaerobic uptake of sterols in yeast Molecular Biology of the Cell 17 2006 90 103 (Pubitemid 43049464)
    • (2006) Molecular Biology of the Cell , vol.17 , Issue.1 , pp. 90-103
    • Reiner, S.1    Micolod, D.2    Zellnig, G.3    Schneiter, R.4
  • 45
    • 79961218716 scopus 로고    scopus 로고
    • Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism
    • E. Rintala, P. Jouhten, M. Toivari, M.G. Wiebe, H. Maaheimo, M. Penttila, and L. Ruohonen Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism OMICS 15 2011 461 476
    • (2011) OMICS , vol.15 , pp. 461-476
    • Rintala, E.1    Jouhten, P.2    Toivari, M.3    Wiebe, M.G.4    Maaheimo, H.5    Penttila, M.6    Ruohonen, L.7
  • 46
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • DOI 10.1198/106186002321018768
    • D. Ruppert Selecting the number of knots for penalized splines Journal of Computational and Graphical Statistics 11 2002 735 757 (Pubitemid 36047103)
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , Issue.4 , pp. 735-757
    • Ruppert, D.1
  • 49
    • 34447649358 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using functional data analysis
    • DOI 10.1016/j.compbiolchem.2007.05.006, PII S1476927107000825
    • J. Song, H.J. Lee, J. Morris, and S. Kang Clustering of time-course gene expression data using functional data analysis Computational Biology and Chemistry 31 2007 265 274 (Pubitemid 47090261)
    • (2007) Computational Biology and Chemistry , vol.31 , Issue.4 , pp. 265-274
    • Song, J.J.1    Lee, H.-J.2    Morris, J.S.3    Kang, S.4
  • 52
    • 33846861301 scopus 로고    scopus 로고
    • Linear transformations and the k-means clustering algorithm: Applications to clustering curves
    • T. Tarpey Linear transformations and the k-means clustering algorithm: applications to clustering curves Annals of Statistics 61 2007 34 40
    • (2007) Annals of Statistics , vol.61 , pp. 34-40
    • Tarpey, T.1
  • 53
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • DOI 10.1093/bioinformatics/btl406
    • A. Thalamuthu, I. Mukhopadhyay, X. Zheng, and G. Tseng Evaluation and comparison of gene clustering methods in microarray analysis Bioinformatics 22 2006 2405 2412 (Pubitemid 44566970)
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2405-2412
    • Thalamuthu, A.1    Mukhopadhyay, I.2    Zheng, X.3    Tseng, G.C.4
  • 54
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • DOI 10.1111/j.0006-341X.2005.031032.x
    • G. Tseng, and W. Wong Tight clustering: a resampling-based approach for identifying stable and tight patterns in data Biometrics 61 2005 10 16 (Pubitemid 40380959)
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 56
    • 27744518228 scopus 로고    scopus 로고
    • Modelling gene expression data over time: Curve clustering with informative prior distributions
    • J. Wakefield, C. Zhou, and S. Self Modelling gene expression data over time: curve clustering with informative prior distributions Bayesian Statistics 7 2003
    • (2003) Bayesian Statistics , vol.7
    • Wakefield, J.1    Zhou, C.2    Self, S.3
  • 57
    • 0037667290 scopus 로고    scopus 로고
    • Clustering gene-expression data with repeated measurements
    • K.Y. Yeung, M. Medvedovic, and R.E. Bumgarner Clustering gene-expression data with repeated measurements Genome Biology 4 2003 R34
    • (2003) Genome Biology , vol.4 , pp. 34
    • Yeung, K.Y.1    Medvedovic, M.2    Bumgarner, R.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.