메뉴 건너뛰기




Volumn 27, Issue 2, 2010, Pages 211-230

Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application

Author keywords

Cholesky decomposition; Functional data; Gram Schmidt orthonormalization; k means; Protein structure; Radial basis functions; Self Organizing Maps

Indexed keywords


EID: 77957020005     PISSN: 01764268     EISSN: 14321343     Source Type: Journal    
DOI: 10.1007/s00357-010-9054-8     Document Type: Article
Times cited : (41)

References (22)
  • 2
    • 49049090541 scopus 로고    scopus 로고
    • Nonlinear Regression Modeling via Regularized Radial Basis Function Networks
    • ANDO, T., KONISHI, S., and IMOTO, S. (2008), "Nonlinear Regression Modeling via Regularized Radial Basis Function Networks", Journal of Statistical Planning and Inference, 138(11), 3616-3633.
    • (2008) Journal of Statistical Planning and Inference , vol.138 , Issue.11 , pp. 3616-3633
    • Ando, T.1    Konishi, S.2    Imoto, S.3
  • 5
    • 77957016902 scopus 로고    scopus 로고
    • DE BOOR, C. (2001), A Practical Guide to Splines (Rev. ed.), Berlin and Heidelberg: Springer.
  • 6
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class Protein Fold Recognition Using Support Vector Machines and Neural Networks
    • DING, C. H., and DUBCHAK, I. (2001), "Multi-class Protein Fold Recognition Using Support Vector Machines and Neural Networks", Bioinformatics, 17, 349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.H.1    Dubchak, I.2
  • 8
    • 25444532788 scopus 로고    scopus 로고
    • Flexible Smoothing with B-Splines and Penalties (With Discussion)
    • EILERS, P., and MARX, B. (1996), "Flexible Smoothing with B-Splines and Penalties (With Discussion)", Statistical Science, 11, 89-121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.1    Marx, B.2
  • 9
    • 33745607855 scopus 로고    scopus 로고
    • Bayesian Alignment Using Hierarchical Models, with Applications in Protein Bioinformatics
    • GREEN, P. J., and MARDIA, K. V. (2006), "Bayesian Alignment Using Hierarchical Models, with Applications in Protein Bioinformatics", Biometrika, 93(2), 235-254.
    • (2006) Biometrika , vol.93 , Issue.2 , pp. 235-254
    • Green, P.J.1    Mardia, K.V.2
  • 11
    • 0001138328 scopus 로고
    • Algorithm as 136: A k-Means Clustering Algorithm
    • HARTIGAN, J. A., and WONG, M. A. (1978), "Algorithm as 136: A k-Means Clustering Algorithm", Applied Statistics, 28, 100-108.
    • (1978) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 12
    • 3242876379 scopus 로고    scopus 로고
    • Selection of Smoothing Parameters in B-Spline Nonparametric Regression Models Using Information Criteria
    • IMOTO, S., and KONISHI, S. (2003), "Selection of Smoothing Parameters in B-Spline Nonparametric Regression Models Using Information Criteria", Annals of the Institute of Statistical Mathematics, 55(4), 671-687.
    • (2003) Annals of the Institute of Statistical Mathematics , vol.55 , Issue.4 , pp. 671-687
    • Imoto, S.1    Konishi, S.2
  • 13
    • 77957016807 scopus 로고    scopus 로고
    • Nonlinear Regression Modeling via Radial Basis Functions
    • KAWANO, S., and KONISHI, S. (2007), "Nonlinear Regression Modeling via Radial Basis Functions", Bulletin of Informatics and Cybernetics, 39, 83-96.
    • (2007) Bulletin of Informatics and Cybernetics , vol.39 , pp. 83-96
    • Kawano, S.1    Konishi, S.2
  • 14
    • 0000512689 scopus 로고    scopus 로고
    • Generalised Information Criteria in Model Selection
    • KONISHI, S., and KITAGAWA, G. (1996), "Generalised Information Criteria in Model Selection", Biometrika, 83, 875-890.
    • (1996) Biometrika , vol.83 , pp. 875-890
    • Konishi, S.1    Kitagawa, G.2
  • 16
    • 77957019117 scopus 로고    scopus 로고
    • KOHONEN, T. (1997),] Self-Organizing Maps, Berlin: Springer.
  • 17
    • 0000672424 scopus 로고
    • Fast Learning in Networks of Locally-tuned Processing Units
    • MOODY, J., and DARKEN, C. J. (1989), "Fast Learning in Networks of Locally-tuned Processing Units", Neural Computation, 1, 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 18
    • 14944343430 scopus 로고    scopus 로고
    • Multi-class Support Vector Machines for Protein Secondary Structure Prediction
    • NGUYEN, M. N., and RAJAPAKSE, J. C. (2003), "Multi-class Support Vector Machines for Protein Secondary Structure Prediction", Genome Informatics, 14, 218-227.
    • (2003) Genome Informatics , vol.14 , pp. 218-227
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 20
    • 77957019864 scopus 로고    scopus 로고
    • ROSSI, F., CONAN-GUEZ, B., and GOLLI, A. E. (2004), "Clustering Functional Data with the SOM Algorithm", Proceedings of European Symposium on Artificial Neural Networks Bruges, Belgium, Brussels: D-Facto Pub, pp. 305-312.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.