메뉴 건너뛰기




Volumn 50, Issue , 2014, Pages 142-153

A linear recurrent kernel online learning algorithm with sparse updates

Author keywords

Hybrid recurrent training; Kernel methods; Linear recurrent; Weight convergence

Indexed keywords

LEARNING ALGORITHMS;

EID: 84888802656     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.11.011     Document Type: Article
Times cited : (42)

References (39)
  • 2
    • 0032140757 scopus 로고    scopus 로고
    • Nonlinear adaptive prediction of speech with a pipelined recurrent neural network
    • Baltersee J., Chambers J. Nonlinear adaptive prediction of speech with a pipelined recurrent neural network. IEEE Transactions on Signal Processing 1998, 46(8):2207-2216.
    • (1998) IEEE Transactions on Signal Processing , vol.46 , Issue.8 , pp. 2207-2216
    • Baltersee, J.1    Chambers, J.2
  • 3
    • 84555196786 scopus 로고    scopus 로고
    • Robust set-membership affine-projection adaptive-filtering algorithm
    • Bhotto M., Antoniou A. Robust set-membership affine-projection adaptive-filtering algorithm. IEEE Transactions on Signal Processing 2012, 60(1):73-81.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , Issue.1 , pp. 73-81
    • Bhotto, M.1    Antoniou, A.2
  • 4
    • 36549083479 scopus 로고    scopus 로고
    • Generalized multiscale radial basis function networks
    • Billings S.A., Wei H.-L., Balikhin M.A. Generalized multiscale radial basis function networks. Neural Networks 2007, 20(10):1081-1094.
    • (2007) Neural Networks , vol.20 , Issue.10 , pp. 1081-1094
    • Billings, S.A.1    Wei, H.-L.2    Balikhin, M.A.3
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2(2):121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 6
    • 0036825821 scopus 로고    scopus 로고
    • Kernel methods: a survey of current techniques
    • Campbell C. Kernel methods: a survey of current techniques. Neurocomputing 2002, 48(1-4):63-84.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 63-84
    • Campbell, C.1
  • 8
    • 0023984210 scopus 로고
    • Robustness analysis of discrete-time adaptive control systems using input-output stability theory: a tutorial
    • Cluett W., Shan S., Fisher D. Robustness analysis of discrete-time adaptive control systems using input-output stability theory: a tutorial. IEE Proceedings D: Control Theory and Applications 1988, 135(2):133-141.
    • (1988) IEE Proceedings D: Control Theory and Applications , vol.135 , Issue.2 , pp. 133-141
    • Cluett, W.1    Shan, S.2    Fisher, D.3
  • 9
    • 0037232792 scopus 로고    scopus 로고
    • Set-membership binormalized data-reusing LMS algorithms
    • Diniz P., Werner S. Set-membership binormalized data-reusing LMS algorithms. IEEE Transactions on Signal Processing 2003, 51(1):124-134.
    • (2003) IEEE Transactions on Signal Processing , vol.51 , Issue.1 , pp. 124-134
    • Diniz, P.1    Werner, S.2
  • 14
    • 72149098116 scopus 로고    scopus 로고
    • An information theoretic approach of designing sparse kernel adaptive filters
    • Liu W., Park I., Príncipe J. An information theoretic approach of designing sparse kernel adaptive filters. IEEE Transactions on Neural Networks 2009, 20(12):1950-1961.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.12 , pp. 1950-1961
    • Liu, W.1    Park, I.2    Príncipe, J.3
  • 18
    • 18144435355 scopus 로고    scopus 로고
    • A recurrent RBF network for non-linear channel with time-varying characteristic
    • In 2002 IEEE international conf. on acoustics, speech, and signal process, ICASSP, (pp. I-1081-I-1084).
    • Mimura, M., Hamada, N., & Furukawa, T. (2002). A recurrent RBF network for non-linear channel with time-varying characteristic. In 2002 IEEE international conf. on acoustics, speech, and signal process, ICASSP, Vol. 1 (pp. I-1081-I-1084).
    • (2002) , vol.1
    • Mimura, M.1    Hamada, N.2    Furukawa, T.3
  • 20
    • 84857770002 scopus 로고    scopus 로고
    • A sparsification approach to set membership identification of switched affine systems
    • Ozay N., Sznaier M., Lagoa C., Camps O. A sparsification approach to set membership identification of switched affine systems. IEEE Transactions on Automatic Control 2012, 57(3):634-648.
    • (2012) IEEE Transactions on Automatic Control , vol.57 , Issue.3 , pp. 634-648
    • Ozay, N.1    Sznaier, M.2    Lagoa, C.3    Camps, O.4
  • 21
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: a survey
    • Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Transactions on Neural Networks 1995, 6(5):1212-1228.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 22
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural Computation 1991, 3(2):213-225.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 23
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Qian N. On the momentum term in gradient descent learning algorithms. Neural Networks 1999, 12(1):145-151.
    • (1999) Neural Networks , vol.12 , Issue.1 , pp. 145-151
    • Qian, N.1
  • 24
    • 31544482783 scopus 로고    scopus 로고
    • Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials
    • Qiu W., Chang C., Liu W., Poon P., Hu Y., Lam F., et al. Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials. IEEE Transactions on Biomedical Engineering 2006, 53(2):226-237.
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , Issue.2 , pp. 226-237
    • Qiu, W.1    Chang, C.2    Liu, W.3    Poon, P.4    Hu, Y.5    Lam, F.6
  • 25
    • 70450194222 scopus 로고    scopus 로고
    • Regularized recurrent least squares support vector machines
    • Qu, H.-N., Oussar, Y., Dreyfus, G., & Xu, W. (2009). Regularized recurrent least squares support vector machines (pp. 508-511).
    • (2009) , pp. 508-511
    • Qu, H.-N.1    Oussar, Y.2    Dreyfus, G.3    Xu, W.4
  • 26
    • 35048879177 scopus 로고    scopus 로고
    • Gaussian processes in machine learning
    • Springer, Berlin, Heidelberg, O. Bousquet, U. von Luxburg, G. Rätsch (Eds.) Advanced lectures on machine learning
    • Rasmussen C. Gaussian processes in machine learning. Lecture notes in computer science 2004, Vol. 3176:63-71. Springer, Berlin, Heidelberg. O. Bousquet, U. von Luxburg, G. Rätsch (Eds.).
    • (2004) Lecture notes in computer science , vol.3176 , pp. 63-71
    • Rasmussen, C.1
  • 29
    • 84865131152 scopus 로고    scopus 로고
    • A generalized representer theorem
    • Springer, Berlin, Heidelberg, Computational learning theory
    • Schōlkopf B., Herbrich R., Smola A. A generalized representer theorem. Lecture notes in computer science 2001, Vol. 2111:416-426. Springer, Berlin, Heidelberg.
    • (2001) Lecture notes in computer science , vol.2111 , pp. 416-426
    • Scholkopf, B.1    Herbrich, R.2    Smola, A.3
  • 30
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • Sebald D., Bucklew J. Support vector machine techniques for nonlinear equalization. IEEE Transactions on Signal Processing 2000, 48(11):3217-3226.
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.11 , pp. 3217-3226
    • Sebald, D.1    Bucklew, J.2
  • 33
    • 83655163812 scopus 로고    scopus 로고
    • Robust initialization of a Jordan network with recurrent constrained learning
    • Song Q. Robust initialization of a Jordan network with recurrent constrained learning. IEEE Transactions on Neural Networks 2011, 22(12):2460-2473.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.12 , pp. 2460-2473
    • Song, Q.1
  • 34
    • 56449088476 scopus 로고    scopus 로고
    • Robust adaptive gradient-descent training algorithm for recurrent neural networks in discrete time domain
    • Song Q., Wu Y., Soh Y. Robust adaptive gradient-descent training algorithm for recurrent neural networks in discrete time domain. IEEE Transactions on Neural Networks 2008, 19(11):1841-1853.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.11 , pp. 1841-1853
    • Song, Q.1    Wu, Y.2    Soh, Y.3
  • 36
    • 0031128328 scopus 로고    scopus 로고
    • On the computational power of recurrent neural networks for structures
    • Sperduti A. On the computational power of recurrent neural networks for structures. Neural Networks 1997, 10(3):395-400.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 395-400
    • Sperduti, A.1
  • 37
    • 0033967085 scopus 로고    scopus 로고
    • How good are support vector machines?
    • Š Raudys How good are support vector machines?. Neural Networks 2000, 13(1):17-19.
    • (2000) Neural Networks , vol.13 , Issue.1 , pp. 17-19
    • Raudys, S.1
  • 39
    • 70649083181 scopus 로고    scopus 로고
    • Time series prediction based on recurrent LS-SVM with mixed kernel
    • In Asia-Pacific conf. on information process., APCIP 2009
    • Xie, J. (2009). Time series prediction based on recurrent LS-SVM with mixed kernel. In Asia-Pacific conf. on information process., APCIP 2009, Vol. 1 (pp. 113-116).
    • (2009) , vol.1 , pp. 113-116
    • Xie, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.