-
1
-
-
80052933197
-
Basic and therapeutic aspects of angiogenesis
-
Potente M., et al. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146:873-887.
-
(2011)
Cell
, vol.146
, pp. 873-887
-
-
Potente, M.1
-
2
-
-
84877142786
-
The tip cell concept 10 years after: new players tune in for a common theme
-
Siekmann A.F., et al. The tip cell concept 10 years after: new players tune in for a common theme. Exp. Cell Res. 2013, 319:1255-1263.
-
(2013)
Exp. Cell Res.
, vol.319
, pp. 1255-1263
-
-
Siekmann, A.F.1
-
3
-
-
79956328903
-
Molecular mechanisms and clinical applications of angiogenesis
-
Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473:298-307.
-
(2011)
Nature
, vol.473
, pp. 298-307
-
-
Carmeliet, P.1
Jain, R.K.2
-
4
-
-
80054012347
-
Developmental and pathological angiogenesis
-
Chung A.S., Ferrara N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 2011, 27:563-584.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 563-584
-
-
Chung, A.S.1
Ferrara, N.2
-
5
-
-
77957241701
-
Dynamics of endothelial cell behavior in sprouting angiogenesis
-
Eilken H.M., Adams R.H. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 2010, 22:617-625.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 617-625
-
-
Eilken, H.M.1
Adams, R.H.2
-
6
-
-
79960227968
-
VEGF and angiopoietin signaling in tumor angiogenesis and metastasis
-
Saharinen P., et al. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 2011, 17:347-362.
-
(2011)
Trends Mol. Med.
, vol.17
, pp. 347-362
-
-
Saharinen, P.1
-
7
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
8
-
-
84881119066
-
Role of PFKFB3-driven glycolysis in vessel sprouting
-
De Bock K., et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013, 154:651-663.
-
(2013)
Cell
, vol.154
, pp. 651-663
-
-
De Bock, K.1
-
9
-
-
70450253343
-
Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of 'aerobic glycolysis' and proliferation
-
Peters K., et al. Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of 'aerobic glycolysis' and proliferation. Cell. Physiol. Biochem. 2009, 24:483-492.
-
(2009)
Cell. Physiol. Biochem.
, vol.24
, pp. 483-492
-
-
Peters, K.1
-
10
-
-
84872534173
-
Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force
-
Polet F., Feron O. Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J. Intern. Med. 2013, 273:156-165.
-
(2013)
J. Intern. Med.
, vol.273
, pp. 156-165
-
-
Polet, F.1
Feron, O.2
-
11
-
-
77249126523
-
Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species
-
Dranka B.P., et al. Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 2010, 48:905-914.
-
(2010)
Free Radic. Biol. Med.
, vol.48
, pp. 905-914
-
-
Dranka, B.P.1
-
12
-
-
37349023393
-
Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia
-
Yeh W.L., et al. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol. Pharmacol. 2008, 73:170-177.
-
(2008)
Mol. Pharmacol.
, vol.73
, pp. 170-177
-
-
Yeh, W.L.1
-
13
-
-
77957368245
-
Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation
-
Parra-Bonilla G., et al. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 299:L513-L522.
-
(2010)
Am. J. Physiol. Lung Cell. Mol. Physiol.
, vol.299
-
-
Parra-Bonilla, G.1
-
14
-
-
0020438908
-
A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate
-
Van Schaftingen E., et al. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur. J. Biochem. 1982, 129:191-195.
-
(1982)
Eur. J. Biochem.
, vol.129
, pp. 191-195
-
-
Van Schaftingen, E.1
-
15
-
-
80053922625
-
Metabolic flux and the regulation of mammalian cell growth
-
Locasale J.W., Cantley L.C. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 2011, 14:443-451.
-
(2011)
Cell Metab.
, vol.14
, pp. 443-451
-
-
Locasale, J.W.1
Cantley, L.C.2
-
16
-
-
79959281722
-
A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets
-
Buchwald P. A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets. Theor. Biol. Med. Model. 2011, 8:20.
-
(2011)
Theor. Biol. Med. Model.
, vol.8
, pp. 20
-
-
Buchwald, P.1
-
17
-
-
3142587028
-
Tumor microenvironmental physiology and its implications for radiation oncology
-
Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 2004, 14:198-206.
-
(2004)
Semin. Radiat. Oncol.
, vol.14
, pp. 198-206
-
-
Vaupel, P.1
-
18
-
-
8144228566
-
Why do cancers have high aerobic glycolysis?
-
Gatenby R.A., Gillies R.J. Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 2004, 4:891-899.
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
19
-
-
0025320928
-
Energetic response of coronary endothelial cells to hypoxia
-
Mertens S., et al. Energetic response of coronary endothelial cells to hypoxia. Am. J. Physiol. 1990, 258:H689-H694.
-
(1990)
Am. J. Physiol.
, vol.258
-
-
Mertens, S.1
-
20
-
-
66349107721
-
Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells
-
Pan S., et al. Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2009, 29:895-901.
-
(2009)
Arterioscler. Thromb. Vasc. Biol.
, vol.29
, pp. 895-901
-
-
Pan, S.1
-
21
-
-
0041355256
-
Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis
-
Leopold J.A., et al. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J. Biol. Chem. 2003, 278:32100-32106.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 32100-32106
-
-
Leopold, J.A.1
-
22
-
-
66749132763
-
Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets
-
Vizan P., et al. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis 2009, 30:946-952.
-
(2009)
Carcinogenesis
, vol.30
, pp. 946-952
-
-
Vizan, P.1
-
23
-
-
77952316342
-
High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis
-
Zhang Z., et al. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. FASEB J. 2010, 24:1497-1505.
-
(2010)
FASEB J.
, vol.24
, pp. 1497-1505
-
-
Zhang, Z.1
-
24
-
-
0025634463
-
Metabolism of exogenous substrates by coronary endothelial cells in culture
-
Krutzfeldt A., et al. Metabolism of exogenous substrates by coronary endothelial cells in culture. J. Mol. Cell. Cardiol. 1990, 22:1393-1404.
-
(1990)
J. Mol. Cell. Cardiol.
, vol.22
, pp. 1393-1404
-
-
Krutzfeldt, A.1
-
25
-
-
84870507227
-
Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells
-
Favaro E., et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab. 2012, 16:751-764.
-
(2012)
Cell Metab.
, vol.16
, pp. 751-764
-
-
Favaro, E.1
-
26
-
-
0032896832
-
Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells
-
Lohmann R., et al. Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells. Am. J. Physiol. 1999, 276:G743-G750.
-
(1999)
Am. J. Physiol.
, vol.276
-
-
Lohmann, R.1
-
27
-
-
0033938163
-
Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase
-
Wu G., et al. Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 2000, 126:115-123.
-
(2000)
Comp. Biochem. Physiol. A: Mol. Integr. Physiol.
, vol.126
, pp. 115-123
-
-
Wu, G.1
-
28
-
-
75149148563
-
Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
-
DeBerardinis R.J., Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010, 29:313-324.
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
DeBerardinis, R.J.1
Cheng, T.2
-
29
-
-
0025088032
-
Protective effect of glutamine on endothelial cell ATP in oxidant injury
-
Hinshaw D.B., Burger J.M. Protective effect of glutamine on endothelial cell ATP in oxidant injury. J. Surg. Res. 1990, 49:222-227.
-
(1990)
J. Surg. Res.
, vol.49
, pp. 222-227
-
-
Hinshaw, D.B.1
Burger, J.M.2
-
30
-
-
46749104479
-
Premature senescence of human endothelial cells induced by inhibition of glutaminase
-
Unterluggauer H., et al. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 2008, 9:247-259.
-
(2008)
Biogerontology
, vol.9
, pp. 247-259
-
-
Unterluggauer, H.1
-
31
-
-
0035933369
-
Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells
-
Dagher Z., et al. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ. Res. 2001, 88:1276-1282.
-
(2001)
Circ. Res.
, vol.88
, pp. 1276-1282
-
-
Dagher, Z.1
-
32
-
-
77950865464
-
Vascular endothelial growth factor B controls endothelial fatty acid uptake
-
Hagberg C.E., et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 2010, 464:917-921.
-
(2010)
Nature
, vol.464
, pp. 917-921
-
-
Hagberg, C.E.1
-
33
-
-
84858266319
-
The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells
-
Reihill J.A., et al. The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells. Vasc. Cell 2011, 3:9.
-
(2011)
Vasc. Cell
, vol.3
, pp. 9
-
-
Reihill, J.A.1
-
34
-
-
70350550302
-
Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells
-
Elmasri H., et al. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J. 2009, 23:3865-3873.
-
(2009)
FASEB J.
, vol.23
, pp. 3865-3873
-
-
Elmasri, H.1
-
35
-
-
77957607057
-
Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
-
Jakobsson L., et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 2010, 12:943-953.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 943-953
-
-
Jakobsson, L.1
-
36
-
-
59649085554
-
Angiogenesis: a team effort coordinated by notch
-
Phng L.K., Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev. Cell 2009, 16:196-208.
-
(2009)
Dev. Cell
, vol.16
, pp. 196-208
-
-
Phng, L.K.1
Gerhardt, H.2
-
37
-
-
80053980982
-
Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement
-
Arima S., et al. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 2011, 138:4763-4776.
-
(2011)
Development
, vol.138
, pp. 4763-4776
-
-
Arima, S.1
-
38
-
-
58249094059
-
Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis
-
Phng L.K., et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev. Cell 2009, 16:70-82.
-
(2009)
Dev. Cell
, vol.16
, pp. 70-82
-
-
Phng, L.K.1
-
39
-
-
79955926985
-
Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
-
Guarani V., et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011, 473:234-238.
-
(2011)
Nature
, vol.473
, pp. 234-238
-
-
Guarani, V.1
-
40
-
-
35348980724
-
SIRT1 controls endothelial angiogenic functions during vascular growth
-
Potente M., et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007, 21:2644-2658.
-
(2007)
Genes Dev.
, vol.21
, pp. 2644-2658
-
-
Potente, M.1
-
41
-
-
78149450359
-
Antiangiogenic activity of 2-deoxy-D-glucose
-
Merchan J.R., et al. Antiangiogenic activity of 2-deoxy-D-glucose. PLoS ONE 2010, 5:e13699.
-
(2010)
PLoS ONE
, vol.5
-
-
Merchan, J.R.1
-
42
-
-
0025203676
-
Characterization of the receptors for vascular endothelial growth factor
-
Vaisman N., et al. Characterization of the receptors for vascular endothelial growth factor. J. Biol. Chem. 1990, 265:19461-19466.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 19461-19466
-
-
Vaisman, N.1
-
43
-
-
66449123068
-
The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
-
Benedito R., et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 2009, 137:1124-1135.
-
(2009)
Cell
, vol.137
, pp. 1124-1135
-
-
Benedito, R.1
-
44
-
-
79953329777
-
Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis
-
Vegran F., et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011, 71:2550-2560.
-
(2011)
Cancer Res.
, vol.71
, pp. 2550-2560
-
-
Vegran, F.1
-
45
-
-
84858120137
-
Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis
-
Sonveaux P., et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE 2012, 7:e33418.
-
(2012)
PLoS ONE
, vol.7
-
-
Sonveaux, P.1
-
46
-
-
84880525862
-
Lactate engages receptor tyrosine kinases Axl, Tie2 and VEGFR-2 to activate PI3K/Akt and promote angiogenesis
-
Ruan G.X., Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2 and VEGFR-2 to activate PI3K/Akt and promote angiogenesis. J. Biol. Chem. 2013, 288:21161-21172.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 21161-21172
-
-
Ruan, G.X.1
Kazlauskas, A.2
-
47
-
-
34447536662
-
Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms
-
Hunt T.K., et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid. Redox Signal. 2007, 9:1115-1124.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, pp. 1115-1124
-
-
Hunt, T.K.1
-
48
-
-
59649112848
-
Regulation of angiogenesis by oxygen and metabolism
-
Fraisl P., et al. Regulation of angiogenesis by oxygen and metabolism. Dev. Cell 2009, 16:167-179.
-
(2009)
Dev. Cell
, vol.16
, pp. 167-179
-
-
Fraisl, P.1
-
49
-
-
84934436201
-
Lactate, with oxygen, incites angiogenesis
-
Hunt T.K., et al. Lactate, with oxygen, incites angiogenesis. Adv. Exp. Med. Biol. 2008, 614:73-80.
-
(2008)
Adv. Exp. Med. Biol.
, vol.614
, pp. 73-80
-
-
Hunt, T.K.1
-
50
-
-
84868159196
-
Visualization of endothelial actin cytoskeleton in the mouse retina
-
Fraccaroli A., et al. Visualization of endothelial actin cytoskeleton in the mouse retina. PLoS ONE 2012, 7:e47488.
-
(2012)
PLoS ONE
, vol.7
-
-
Fraccaroli, A.1
-
51
-
-
84865382212
-
A mechanochemical model of actin filaments
-
Yogurtcu O.N., et al. A mechanochemical model of actin filaments. Biophys. J. 2012, 103:719-727.
-
(2012)
Biophys. J.
, vol.103
, pp. 719-727
-
-
Yogurtcu, O.N.1
-
52
-
-
34247644614
-
Regulation of actin filament assembly by Arp2/3 complex and formins
-
Pollard T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 2007, 36:451-477.
-
(2007)
Annu. Rev. Biophys. Biomol. Struct.
, vol.36
, pp. 451-477
-
-
Pollard, T.D.1
-
53
-
-
34247263230
-
How ATP hydrolysis controls filament assembly from profilin-actin: implication for formin processivity
-
Romero S., et al. How ATP hydrolysis controls filament assembly from profilin-actin: implication for formin processivity. J. Biol. Chem. 2007, 282:8435-8445.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 8435-8445
-
-
Romero, S.1
-
54
-
-
50649084583
-
The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics
-
Lim K.B., et al. The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J. Biol. Chem. 2008, 283:20454-20472.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 20454-20472
-
-
Lim, K.B.1
-
55
-
-
77951024214
-
Filamentous actin and its associated binding proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the membrane of human erythrocytes
-
Real-Hohn A., et al. Filamentous actin and its associated binding proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the membrane of human erythrocytes. Biochimie 2010, 92:538-544.
-
(2010)
Biochimie
, vol.92
, pp. 538-544
-
-
Real-Hohn, A.1
-
56
-
-
0016808875
-
Positional information and pattern regulation in hydra: enzyme profiles
-
Baquer N.Z., et al. Positional information and pattern regulation in hydra: enzyme profiles. J. Embryol. Exp. Morphol. 1975, 33:853-867.
-
(1975)
J. Embryol. Exp. Morphol.
, vol.33
, pp. 853-867
-
-
Baquer, N.Z.1
-
57
-
-
26244462476
-
ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes
-
Mitchell B.F., et al. ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol. Biol. Cell 2005, 16:4509-4518.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4509-4518
-
-
Mitchell, B.F.1
-
58
-
-
33846423878
-
Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis
-
Hertz L., et al. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab. 2007, 27:219-249.
-
(2007)
J. Cereb. Blood Flow Metab.
, vol.27
, pp. 219-249
-
-
Hertz, L.1
-
59
-
-
59649117924
-
Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization
-
Mazzone M., et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009, 136:839-851.
-
(2009)
Cell
, vol.136
, pp. 839-851
-
-
Mazzone, M.1
-
60
-
-
79953131280
-
Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of β-catenin
-
Zhang J., et al. Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of β-catenin. J. Biol. Chem. 2011, 286:8055-8066.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 8055-8066
-
-
Zhang, J.1
-
61
-
-
84877109717
-
Angiopoietin signaling in the vasculature
-
Eklund L., Saharinen P. Angiopoietin signaling in the vasculature. Exp. Cell Res. 2013, 319:1271-1280.
-
(2013)
Exp. Cell Res.
, vol.319
, pp. 1271-1280
-
-
Eklund, L.1
Saharinen, P.2
-
62
-
-
80255122789
-
Endothelial laminins underlie the tip cell microenvironment
-
Kitajewski J. Endothelial laminins underlie the tip cell microenvironment. EMBO Rep. 2011, 12:1087-1088.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1087-1088
-
-
Kitajewski, J.1
-
63
-
-
80255135606
-
Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo
-
Stenzel D., et al. Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep. 2011, 12:1135-1143.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1135-1143
-
-
Stenzel, D.1
-
64
-
-
79951963618
-
Adhesion molecule signalling: not always a sticky business
-
Cavallaro U., Dejana E. Adhesion molecule signalling: not always a sticky business. Nat. Rev. Mol. Cell Biol. 2011, 12:189-197.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 189-197
-
-
Cavallaro, U.1
Dejana, E.2
-
65
-
-
84857719747
-
Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells
-
Giampietro C., et al. Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood 2012, 119:2159-2170.
-
(2012)
Blood
, vol.119
, pp. 2159-2170
-
-
Giampietro, C.1
-
67
-
-
84862121988
-
Endothelial glycocalyx: permeability barrier and mechanosensor
-
Curry F.E., Adamson R.H. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann. Biomed. Eng. 2012, 40:828-839.
-
(2012)
Ann. Biomed. Eng.
, vol.40
, pp. 828-839
-
-
Curry, F.E.1
Adamson, R.H.2
|