Bacterial fatty-acid biosynthesis: A genomics-driven target for antibacterial drug discovery
Payne, D. J.; Warren, P. V.; Holmes, D. J.; Ji, Y.; Lonsdale, J. T. Bacterial fatty-acid biosynthesis: A genomics-driven target for antibacterial drug discovery Drug Discovery Today 2001, 6, 537-544
The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance
Rawat, R.; Whitty, A.; Tonge, P. J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13881-13886
InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K. S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W. R., Jr. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis Science 1994, 14, 227-230
Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Delivery Rev. 2001, 46, 3-26
Towards a new tuberculosis drug: Pyridomycin - Nature's isoniazid
Hartkoorn, R. C.; Sala, C.; Neres, J.; Pojer, F.; Magnet, S.; Mukherjee, R.; Uplekar, S.; Boy-Röttger, S.; Altmann, K. H.; Cole, S. T. Towards a new tuberculosis drug: pyridomycin-nature's isoniazid EMBO Mol. Med. 2012, 4, 1032-1042
Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase
Rafferty, J. B.; Simon, J. W.; Baldock, C.; Artymiuk, P. J.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Rice, D. W. Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase Structure 1995, 3, 927-938
Targeting tuberculosis and malaria through inhibition of enoyl reductase: Compound activity and structural data
Kuo, M. R.; Morbidoni, H. R.; Alland, D.; Sneddon, S. F.; Gourlie, B. B.; Staveski, M. M.; Leonard, M.; Gregory, J. S.; Janjigian, A. D.; Yee, C.; Musser, J. M.; Kreiswirth, B.; Iwamoto, H.; Perozzo, R.; Jacobs, W. R.; Sacchettini, J. C.; Fidock, D. A. Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data J. Biol. Chem. 2003, 278, 20851-20859
High-Throughput Interrogation of Ligand Binding Mode Using a Fluorescence-Based Assay
Ledź, P. S.; Śledź, P.; Lang, S.; Stubbs, C. J.; Abell, C. High-Throughput Interrogation of Ligand Binding Mode Using a Fluorescence-Based Assay Angew. Chem., Int. Ed. 2012, 51, 7680-7683
Roles of Tyrosine 158 and Lysine 165 in the catalytic mechanism of InhA, the Enoyl-ACP Reductase from Mycobacterium tuberculosis
Parikh, S. L.; Moynihan, D. P.; Xiao, G.; Tonge, P. J. Roles of Tyrosine 158 and Lysine 165 in the catalytic mechanism of InhA, the Enoyl-ACP Reductase from Mycobacterium tuberculosis Biochemistry 1999, 38, 13623-13634
A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis
Luckner, S. R.; Liu, N.; Am Ende, C. W.; Tonge, P. J.; Kisker, C. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis J. Biol. Chem. 2010, 285, 14330-14337
Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate
Rozwarski, D. A.; Vilcheze, C.; Sugantino, M.; Bittman, R.; Sacchettini, J. C. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate J. Biol. Chem. 1999, 274, 15582-15589
Pyrrolidine Carboxamides as a Novel Class of Inhibitors of Enoyl Acyl Carrier Protein Reductase from Mycobacterium tuberculosis
He, X.; Alian, A.; Stroud, R.; Ortiz de Montellano, P. R. Pyrrolidine Carboxamides as a Novel Class of Inhibitors of Enoyl Acyl Carrier Protein Reductase from Mycobacterium tuberculosis J. Med. Chem. 2006, 49, 6308-6323
High Affinity InhA Inhibitors with Activity against Drug-Resistant Strains of Mycobacterium tuberculosis
Sullivan, T. J.; Truglio, J. J.; Boyne, M. E.; Novichenok, P.; Zhang, X.; Stratton, C.; Li, H. J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R. A.; Kisker, C.; Tonge, P. J. High Affinity InhA Inhibitors with Activity against Drug-Resistant Strains of Mycobacterium tuberculosis ACS Chem. Biol. 2006, 1, 43-53
Rational Optimization of Drug-Target Residence Time: Insights from Inhibitor Binding to the Staphylococcus aureus FabI Enzyme-Product Complex
Chang, A.; Schiebel, J.; Yu, W.; Bommineni, G. R.; Pan, P.; Baxter, M. V.; Khanna, A.; Sotriffer, C. A.; Kisker, C.; Tonge, P. J. Rational Optimization of Drug-Target Residence Time: Insights from Inhibitor Binding to the Staphylococcus aureus FabI Enzyme-Product Complex Biochemistry 2013, 52, 4217-4228
Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis
Dessen, A.; Quemard, A.; Blanchard, J. S.; Jacobs, W. R., Jr.; Sacchettini, J. C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis Science 1995, 267, 1638-1641
Staphylococcus aureus FabI: Inhibition, Substrate Recognition and Potential Implications for in Vivo Essentiality
Schiebel, J.; Chang, A.; Lu, H.; Baxter, M. V.; Tonge, P. J.; Kisker, C. Staphylococcus aureus FabI: Inhibition, Substrate Recognition and Potential Implications for In Vivo Essentiality Structure 2012, 9, 802-813