메뉴 건너뛰기




Volumn 126, Issue , 2014, Pages 141-150

Online fuzzy medoid based clustering algorithms

Author keywords

Fuzzy clustering; Large dataset; Medoids; Online; Stream

Indexed keywords

COMPUTATION TIME; DECAY MECHANISMS; INTERPRETABILITY; LARGE DATASET; MEDOIDS; ONLINE; OVERLAPPING CLUSTERS; STREAM;

EID: 84887610180     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.07.057     Document Type: Article
Times cited : (14)

References (47)
  • 1
    • 79960697024 scopus 로고    scopus 로고
    • Fuzzily connected multimodel systems evolving autonomously from data streams
    • Angelov P. Fuzzily connected multimodel systems evolving autonomously from data streams. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 41(4):898-910.
    • (2011) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.41 , Issue.4 , pp. 898-910
    • Angelov, P.1
  • 4
    • 51149106562 scopus 로고    scopus 로고
    • Online fuzzy c means, in: Fuzzy Information Processing Society, NAFIPS 2008
    • P. Hore, L. Hall, D. Goldgof, W. Cheng, Online fuzzy c means, in: Fuzzy Information Processing Society, NAFIPS 2008, 2008, pp. 1-5.
    • (2008) , pp. 1-5
    • Hore, P.1    Hall, L.2    Goldgof, D.3    Cheng, W.4
  • 5
    • 77956595730 scopus 로고    scopus 로고
    • New incremental fuzzy c medoids clustering algorithms
    • Proceedings of the North American Fuzzy Information Processing Society 2010, Toronto, Canada
    • N. Labroche, New incremental fuzzy c medoids clustering algorithms, in: Proceedings of the North American Fuzzy Information Processing Society 2010, Toronto, Canada, 2010, pp. 145-150.
    • (2010) , pp. 145-150
    • Labroche, N.1
  • 7
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press (Ed.), Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley
    • J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: University of California Press (Ed.), Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, Berkeley, 1967, pp. 281-297.
    • (1967) , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 8
    • 84887609364 scopus 로고
    • Numerical Taxonomy-The Principles and Practice of Numerical Classification, Technical Report, W. H. Freeman, San Francisco
    • P.H.A. Sneath, R.R. Sokal, Numerical Taxonomy-The Principles and Practice of Numerical Classification, Technical Report, W. H. Freeman, San Francisco, 1973.
    • (1973)
    • Sneath, P.H.A.1    Sokal, R.R.2
  • 9
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: an efficient data clustering method for very large databases
    • Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Canada
    • T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Canada, 1996, pp. 103-114.
    • (1996) , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 10
    • 23044519893 scopus 로고    scopus 로고
    • A generalization-based approach to clustering of web usage sessions
    • in: Masand, Spiliopoulou (Eds.), Web Usage Analysis and User Profiling, vol. 1836 of LNCS, Springer
    • Y. Fu, K. Sandhu, M. Shih, A generalization-based approach to clustering of web usage sessions, in: Masand, Spiliopoulou (Eds.), Web Usage Analysis and User Profiling, vol. 1836 of LNCS, Springer, 2000, pp. 21-38.
    • (2000) , pp. 21-38
    • Fu, Y.1    Sandhu, K.2    Shih, M.3
  • 11
    • 67649088034 scopus 로고    scopus 로고
    • Robust partitional clustering by outlier and density insensitive seeding, Pattern Recognition Lett
    • M. Hasan, V. Chaoji, S. Salem, M. Zaki, Robust partitional clustering by outlier and density insensitive seeding, Pattern Recognition Lett. 30 (11) (2009) 994-1002.
    • (2009) , vol.30 , Issue.11 , pp. 994-1002
    • Hasan, M.1    Chaoji, V.2    Salem, S.3    Zaki, M.4
  • 12
    • 0022064511 scopus 로고
    • A best possible heuristic for the k-center problem
    • Hochbaum D.S., Shmoys D.B. A best possible heuristic for the k-center problem. Math. Oper. Res. 1985, 10(2):180-184.
    • (1985) Math. Oper. Res. , vol.10 , Issue.2 , pp. 180-184
    • Hochbaum, D.S.1    Shmoys, D.B.2
  • 13
    • 0030150519 scopus 로고    scopus 로고
    • Partially supervised clustering for image segmentation, Pattern Recognition
    • A.M. Bensaid, L.O. Hall, J.C. Bezdek, L.P. Clarke, Partially supervised clustering for image segmentation, Pattern Recognition 29 (5) (1996).
    • (1996) , vol.29 , Issue.5
    • Bensaid, A.M.1    Hall, L.O.2    Bezdek, J.C.3    Clarke, L.P.4
  • 14
    • 0001931761 scopus 로고
    • Algorithm of fuzzy clustering with partial supervision
    • Pedrycz W. Algorithm of fuzzy clustering with partial supervision. Pattern Recognition Lett. 1985, 3:13-20.
    • (1985) Pattern Recognition Lett. , vol.3 , pp. 13-20
    • Pedrycz, W.1
  • 15
    • 0031257480 scopus 로고    scopus 로고
    • Fuzzy clustering with partial supervision
    • Pedrycz W., Waletzky J. Fuzzy clustering with partial supervision. Man Cybern. 1997, 27(5):787-795.
    • (1997) Man Cybern. , vol.27 , Issue.5 , pp. 787-795
    • Pedrycz, W.1    Waletzky, J.2
  • 16
    • 0038545418 scopus 로고    scopus 로고
    • Identification of web user traffic composition using multi-modal clustering and information scent, in: Proceedings of the Workshop on Web Mining, SIAM Conference on Data Mining
    • J. Heer, E. Chi, Identification of web user traffic composition using multi-modal clustering and information scent, in: Proceedings of the Workshop on Web Mining, SIAM Conference on Data Mining, 2001, pp. 51-58.
    • (2001) , pp. 51-58
    • Heer, J.1    Chi, E.2
  • 18
    • 0024475955 scopus 로고
    • Relational dual of the c-means clustering algorithms
    • Hathaway R., Davenport J., Bezdek J. Relational dual of the c-means clustering algorithms. Pattern Recognition 1989, 22(2):205-212.
    • (1989) Pattern Recognition , vol.22 , Issue.2 , pp. 205-212
    • Hathaway, R.1    Davenport, J.2    Bezdek, J.3
  • 19
    • 0028667335 scopus 로고
    • Nerf c-means. non-Euclidian relational fuzzy clustering
    • Hathaway R., Bezdek J. Nerf c-means. non-Euclidian relational fuzzy clustering. Pattern Recognition 1994, 27:429-437.
    • (1994) Pattern Recognition , vol.27 , pp. 429-437
    • Hathaway, R.1    Bezdek, J.2
  • 20
    • 33746922014 scopus 로고    scopus 로고
    • Approximate clustering in very large relational data, Int. J. Intell. Syst
    • J.C. Bezdek, R.J. Hathaway, J.M. Huband, C. Leckie, R.Kotagiri, Approximate clustering in very large relational data, Int. J. Intell. Syst. 21 (8) (2006).
    • (2006) , vol.21 , Issue.8
    • Bezdek, J.C.1    Hathaway, R.J.2    Huband, J.M.3    Leckie, C.4    Kotagiri, R.5
  • 21
    • 0001217510 scopus 로고
    • Clustering by means of medoids, in: Statistical Data Analysis based on the L1 Norm, Elsevier
    • L. Kaufman, P. Rousseeuw, Clustering by means of medoids, in: Statistical Data Analysis based on the L1 Norm, Elsevier, 1987, pp. 405-416.
    • (1987) , pp. 405-416
    • Kaufman, L.1    Rousseeuw, P.2
  • 22
    • 84887607228 scopus 로고    scopus 로고
    • Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley and Sons
    • L. Kaufman, P. Rousseeuw, in: Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley and Sons, 2005.
    • (2005)
    • Kaufman, L.1    Rousseeuw, P.2
  • 24
    • 26344435844 scopus 로고    scopus 로고
    • Categorizing visitors dynamically by fast and robust clustering of access logs, in: Lecture Notes in Computer Science, Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development
    • V. Estivill-Castro, J. Yang, Categorizing visitors dynamically by fast and robust clustering of access logs, in: Lecture Notes in Computer Science, Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development, 2001, pp. 498-507.
    • (2001) , pp. 498-507
    • Estivill-Castro, V.1    Yang, J.2
  • 25
    • 0035416012 scopus 로고    scopus 로고
    • Low-complexity fuzzy relational clustering algorithms for web mining
    • Krishnapuram R., Joshi A., Nasraoui O., Yi L. Low-complexity fuzzy relational clustering algorithms for web mining. IEEE-FS 2001, 9:595-607.
    • (2001) IEEE-FS , vol.9 , pp. 595-607
    • Krishnapuram, R.1    Joshi, A.2    Nasraoui, O.3    Yi, L.4
  • 26
    • 12244298691 scopus 로고    scopus 로고
    • Automatic web user profiling and personalization using robust fuzzy relational clustering
    • Springer, J. Kacprzyk (Ed.)
    • Nasraoui O., Krishnapuram R., Joshi A., Kamdar T. Automatic web user profiling and personalization using robust fuzzy relational clustering. E-Commerce and Intelligent Methods 2002, Springer. J. Kacprzyk (Ed.).
    • (2002) E-Commerce and Intelligent Methods
    • Nasraoui, O.1    Krishnapuram, R.2    Joshi, A.3    Kamdar, T.4
  • 27
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_ets: a simplified method for learning evolving Takagi-Sugeno fuzzy models, in: International Conference on Fuzzy Systems
    • P. Angelov, D. Filev, Simpl_ets: a simplified method for learning evolving Takagi-Sugeno fuzzy models, in: International Conference on Fuzzy Systems, 2005, pp. 1068-1072.
    • (2005) , pp. 1068-1072
    • Angelov, P.1    Filev, D.2
  • 28
    • 0036530967 scopus 로고    scopus 로고
    • Denfis. dynamic evolution neural-fuzzy inference system and its application for time-series prediction
    • Kasabov N., Song Q. Denfis. dynamic evolution neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 2002, 10(2):144-154.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 29
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self constructing neural fuzzy inference network
    • Juang C., Lin C. An on-line self constructing neural fuzzy inference network. IEEE Trans. Neural Networks 1998, 6(1):12-32.
    • (1998) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.1    Lin, C.2
  • 30
    • 79952360960 scopus 로고    scopus 로고
    • Backpropagation to train an evolving radial basis function neural network
    • Rubio J.J., Vàsquez D.M., Pacheco J. Backpropagation to train an evolving radial basis function neural network. Evolving Syst. 2010, 1:173-180.
    • (2010) Evolving Syst. , vol.1 , pp. 173-180
    • Rubio, J.J.1    Vàsquez, D.M.2    Pacheco, J.3
  • 31
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system for non linear system identification and prediction
    • Rong H., Sundarajan N., Huang G., Saratchandran P. Sequential adaptive fuzzy inference system for non linear system identification and prediction. Fuzzy Sets Syst. 2006, 157(9):1260-1275.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.1    Sundarajan, N.2    Huang, G.3    Saratchandran, P.4
  • 32
    • 11244351634 scopus 로고    scopus 로고
    • An approach for online extraction of fuzzy rules using a self-organizing fuzzy neural networks
    • Leng G., Ginnity T.M., Prasad G. An approach for online extraction of fuzzy rules using a self-organizing fuzzy neural networks. Fuzzy Sets Syst. 2005, 150:211-243.
    • (2005) Fuzzy Sets Syst. , vol.150 , pp. 211-243
    • Leng, G.1    Ginnity, T.M.2    Prasad, G.3
  • 33
    • 24344498330 scopus 로고    scopus 로고
    • Mining data streams: a review, ACM SIGMOD Rec
    • M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: a review, ACM SIGMOD Rec. 34 (2) (2005).
    • (2005) , vol.34 , Issue.2
    • Gaber, M.M.1    Zaslavsky, A.2    Krishnaswamy, S.3
  • 34
    • 84900606348 scopus 로고    scopus 로고
    • (Eds.), Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, IGI Global
    • A. Laurent, M.-J. Lesot (Eds.), Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, IGI Global, 2009.
    • (2009)
    • Laurent, A.1    Lesot, M.-J.2
  • 35
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams, in: In VLDB
    • C.C. Aggarwal, T.J. Watson, R. Ctr, J. Han, J. Wang, P.S. Yu, A framework for clustering evolving data streams, in: In VLDB, 2003, pp. 81-92.
    • (2003) , pp. 81-92
    • Aggarwal, C.C.1    Watson, T.J.2    Ctr, R.3    Han, J.4    Wang, J.5    Yu, P.S.6
  • 36
    • 80053927938 scopus 로고    scopus 로고
    • The clustree. indexing micro-clusters for anytime stream mining
    • Philipp Kranen C.B., Assent Ira, Seidl T. The clustree. indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 2011, 29(2):249-272.
    • (2011) Knowl. Inf. Syst. , vol.29 , Issue.2 , pp. 249-272
    • Philipp Kranen, C.B.1    Assent, I.2    Seidl, T.3
  • 37
    • 19944364339 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams, in: Proceedings of the 30th International Conference on Very Large Databases
    • C. Aggarwal, J. Han, J. Wang, P. Yu, A framework for projected clustering of high dimensional data streams, in: Proceedings of the 30th International Conference on Very Large Databases, 2004, pp. 852-863.
    • (2004) , pp. 852-863
    • Aggarwal, C.1    Han, J.2    Wang, J.3    Yu, P.4
  • 38
    • 84862916446 scopus 로고    scopus 로고
    • Clustering algorithm for high dimensional data stream over sliding windows, in: International Joint COnference of IEEE TrustCom-11
    • W. Liu, J. O. Yang, Clustering algorithm for high dimensional data stream over sliding windows, in: International Joint COnference of IEEE TrustCom-11, 2011, pp. 1537-1542.
    • (2011) , pp. 1537-1542
    • Liu, W.1    Yang, J.O.2
  • 39
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • 2006 SIAM Conference on Data Mining
    • F. Cao, M. Ester, W. Qian, A.Zhou, Density-based clustering over an evolving data stream with noise, in: In 2006 SIAM Conference on Data Mining, 2006, pp. 328-339.
    • (2006) , pp. 328-339
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 40
    • 84887610957 scopus 로고    scopus 로고
    • (Eds.), D.-B.C. for Real-Time Stream Data, Proceedings of KDD'07 Conference. ACM
    • Y. Chen, L. Tu (Eds.), D.-B.C. for Real-Time Stream Data, Proceedings of KDD'07 Conference. ACM, 2007.
    • (2007)
    • Chen, Y.1    Tu, L.2
  • 41
    • 84887616574 scopus 로고    scopus 로고
    • (Eds.), C-denstream: Using Domain Knowledge on a Data Stream. S.-V.B. Heidelberg, DS 2009, LNAI 5808
    • C. Ruiz, E. Menasalvas, M. Spiliopoulou (Eds.), C-denstream: Using Domain Knowledge on a Data Stream. S.-V.B. Heidelberg, DS 2009, LNAI 5808, 2009.
    • (2009)
    • Ruiz, C.1    Menasalvas, E.2    Spiliopoulou, M.3
  • 42
    • 55249103406 scopus 로고    scopus 로고
    • Linear fuzzy clustering of relational data based on extended fuzzy c-medoids, in: IEEE International Conference on Fuzzy Systems, 2008. FUZZ-IEEE 2008, Hong Kong
    • N. Haga, K. Honda, H. Ichihashi, A. Notsu, Linear fuzzy clustering of relational data based on extended fuzzy c-medoids, in: IEEE International Conference on Fuzzy Systems, 2008. FUZZ-IEEE 2008, Hong Kong, 2008, pp. 1098-7584.
    • (2008) , pp. 1098-7584
    • Haga, N.1    Honda, K.2    Ichihashi, H.3    Notsu, A.4
  • 43
    • 77953022339 scopus 로고    scopus 로고
    • Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads, J. Classification
    • M.M.-T. Chiang, B. Mirkin, Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads, J. Classification 27 (2010).
    • (2010) , vol.27
    • Chiang, M.M.-T.1    Mirkin, B.2
  • 44
    • 79951737370 scopus 로고    scopus 로고
    • Clustering performance on evolving data streams: assessing algorithms and evaluation measures within moa, in: Data Mining Workshops (ICDMW), 2010 IEEE International Conference on Data Mining Workshops
    • P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes, B. Pfahringer, Clustering performance on evolving data streams: assessing algorithms and evaluation measures within moa, in: Data Mining Workshops (ICDMW), 2010 IEEE International Conference on Data Mining Workshops, 2010, pp. 1400-1403.
    • (2010) , pp. 1400-1403
    • Kranen, P.1    Kremer, H.2    Jansen, T.3    Seidl, T.4    Bifet, A.5    Holmes, G.6    Pfahringer, B.7
  • 45
    • 80052676926 scopus 로고    scopus 로고
    • An effective evaluation measure for clustering on evolving data streams, in: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, ACM, New York, NY, USA
    • H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes, B. Pfahringer, An effective evaluation measure for clustering on evolving data streams, in: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, ACM, New York, NY, USA, 2011, pp. 868-876.
    • (2011) , pp. 868-876
    • Kremer, H.1    Kranen, P.2    Jansen, T.3    Seidl, T.4    Bifet, A.5    Holmes, G.6    Pfahringer, B.7
  • 46
    • 84887616992 scopus 로고    scopus 로고
    • U.M.L. Repository, 〈〉 (2010).
    • U.M.L. Repository, 〈〉 (2010). http://archive.ics.uci.edu/ml/.
  • 47
    • 70350647693 scopus 로고    scopus 로고
    • Adapting the right measures for k-means clustering, in: Proceedings of the KDD 2009 Conference, ACM
    • J. Wu, H. Xiong, J. Chen, Adapting the right measures for k-means clustering, in: Proceedings of the KDD 2009 Conference, ACM, 2009, pp. 877-885.
    • (2009) , pp. 877-885
    • Wu, J.1    Xiong, H.2    Chen, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.