메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1400-1403

Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within MOA

Author keywords

Clustering; Data streams; Evaluation measures

Indexed keywords

CLUSTERING; CLUSTERINGS; DATA STREAM; EVALUATION MEASURES; GENERAL TOOLS; ON-LINE ANALYSIS; SOFTWARE ENVIRONMENTS;

EID: 79951737370     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2010.17     Document Type: Conference Paper
Times cited : (20)

References (14)
  • 2
    • 79951754114 scopus 로고    scopus 로고
    • OpenSubspace: An open source framework for evaluation and exploration of subspace clustering algorithms in weka
    • E. M̈uller, I. Assent, S. G̈unnemann, T. Jansen, and T. Seidl, "OpenSubspace: An open source framework for evaluation and exploration of subspace clustering algorithms in weka," in OSDM in conjunction with PAKDD, 2009, pp. 2-13.
    • (2009) OSDM in Conjunction with PAKDD , pp. 2-13
    • M̈uller, E.1    Assent, I.2    G̈unnemann, S.3    Jansen, T.4    Seidl, T.5
  • 7
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for clustering evolving data streams," in VLDB, 2003.
    • (2003) VLDB
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 8
    • 77951189927 scopus 로고    scopus 로고
    • Self-adaptive anytime stream clustering
    • P. Kranen, I. Assent, C. Baldauf, and T. Seidl, "Self-adaptive anytime stream clustering," in ICDM, 2009, pp. 249-258.
    • (2009) ICDM , pp. 249-258
    • Kranen, P.1    Assent, I.2    Baldauf, C.3    Seidl, T.4
  • 9
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • F. Cao, M. Ester, W. Qian, and A. Zhou, "Density-based clustering over an evolving data stream with noise," in SDM, 2006.
    • (2006) SDM
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 10
    • 73349087457 scopus 로고    scopus 로고
    • Stream data clustering based on grid density and attraction
    • L. Tu and Y. Chen, "Stream data clustering based on grid density and attraction," ACM TKDD 3(3):1-27, 2009.
    • (2009) ACM TKDD , vol.3 , Issue.3 , pp. 1-27
    • Tu, L.1    Chen, Y.2
  • 11
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D. H. Fisher, "Knowledge acquisition via incremental conceptual clustering," Machine Learning 2(2):139-172, 1987.
    • (1987) Machine Learning , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 12
    • 79951748576 scopus 로고    scopus 로고
    • Adapting the right measures for k-means clustering
    • J. Chen, "Adapting the right measures for k-means clustering," in ACM KDD, 2009, pp. 877-884.
    • (2009) ACM KDD , pp. 877-884
    • Chen, J.1
  • 13
    • 0000228352 scopus 로고
    • A monte carlo study of thirty internal criterion measures for cluster analysis
    • G. W. Milligan, "A monte carlo study of thirty internal criterion measures for cluster analysis," Psychometrika, vol. 46, no. 2, pp. 187-199, 1981.
    • (1981) Psychometrika , vol.46 , Issue.2 , pp. 187-199
    • Milligan, G.W.1
  • 14
    • 67049114699 scopus 로고    scopus 로고
    • Comparison of cluster representations from partial second- to full fourth-order cross moments for data stream clustering
    • M. J. Song and L. Zhang, "Comparison of cluster representations from partial second- to full fourth-order cross moments for data stream clustering," in ICDM, 2008, pp. 560-569.
    • (2008) ICDM , pp. 560-569
    • Song, M.J.1    Zhang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.