메뉴 건너뛰기




Volumn 21, Issue 8, 2006, Pages 817-841

Approximate clustering in very large relational data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; DATA STRUCTURES; DATABASE SYSTEMS; SAMPLING; STATISTICAL METHODS; VECTORS;

EID: 33746922014     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.20162     Document Type: Article
Times cited : (28)

References (28)
  • 1
    • 0001803833 scopus 로고    scopus 로고
    • Massive data workshop: The morning after
    • Washington, DC: National Academy Press
    • Huber P. Massive data workshop: The morning after. In: Massive data sets. Washington, DC: National Academy Press; 1996. pp 169-184.
    • (1996) Massive Data Sets , pp. 169-184
    • Huber, P.1
  • 2
    • 0036791571 scopus 로고    scopus 로고
    • Complexity reduction for "large image" processing
    • Pal NR, Bezdek JC. Complexity reduction for "large image" processing. IEEE Trans Syst Man Cybern 2002;B32:598-611.
    • (2002) IEEE Trans Syst Man Cybern , vol.B32 , pp. 598-611
    • Pal, N.R.1    Bezdek, J.C.2
  • 3
    • 33746912228 scopus 로고    scopus 로고
    • Extending fuzzy and probabilistic clustering to very large data sets
    • in press
    • Hathaway RJ, Bezdek JC. Extending fuzzy and probabilistic clustering to very large data sets. Comput Stat Data Anal 2006, in press.
    • (2006) Comput Stat Data Anal
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 7
    • 0242698067 scopus 로고    scopus 로고
    • The learning curve sampling method applied to model based clustering
    • Meek C, Thiesson B, Heckerman D. The learning curve sampling method applied to model based clustering. J Mach Learn Res 2002;2:397-418.
    • (2002) J Mach Learn Res , vol.2 , pp. 397-418
    • Meek, C.1    Thiesson, B.2    Heckerman, D.3
  • 9
    • 0003707174 scopus 로고    scopus 로고
    • Scaling em (expectation-maximization) clustering to large databases
    • Redmond, WA: Microsoft Research
    • Bradley P, Fayyad U, Reina C. Scaling EM (expectation-maximization) clustering to large databases. Technical Report MSR-TR-98-35. Redmond, WA: Microsoft Research; 1998.
    • (1998) Technical Report , vol.MSR-TR-98-35
    • Bradley, P.1    Fayyad, U.2    Reina, C.3
  • 13
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • San Francisco, CA: Morgan Kauffman
    • Ng RT, Han J. Efficient and effective clustering methods for spatial data mining. In: Proc 20th Int Conf on Very Large Databases. San Francisco, CA: Morgan Kauffman; 1994. pp 144-155.
    • (1994) Proc 20th Int Conf on Very Large Databases , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 15
    • 11144300344 scopus 로고    scopus 로고
    • From massive data sets to science catalogs: Applications and challenges
    • Kettenring J, Pregibon D, editors. Washington, DC: National Research Council
    • Fayyad U, Smyth P. From massive data sets to science catalogs: Applications and challenges. In: Kettenring J, Pregibon D, editors. Proc Workshop on Massive Data Sets. Washington, DC: National Research Council; 1996.
    • (1996) Proc Workshop on Massive Data Sets
    • Fayyad, U.1    Smyth, P.2
  • 16
    • 0002815587 scopus 로고    scopus 로고
    • A general method for scaling up machine learning algorithms and its application to clustering
    • Domingos P, Hulten G. A general method for scaling up machine learning algorithms and its application to clustering. In: Proc 18th Int Conf on Machine Learning; 2001. pp 106-113.
    • (2001) Proc 18th Int Conf on Machine Learning , pp. 106-113
    • Domingos, P.1    Hulten, G.2
  • 21
    • 0036531325 scopus 로고    scopus 로고
    • Reducing the time complexity of the fuzzy c-means algorithm
    • Kolen JF, Hutcheson T. Reducing the time complexity of the fuzzy c-means algorithm. IEEE Trans Fuzzy Syst 2002;10:263-267.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , pp. 263-267
    • Kolen, J.F.1    Hutcheson, T.2
  • 22
    • 0042459889 scopus 로고
    • Indices of partition fuzziness and the detection of clusters in large data sets
    • Gupta MM, editor. New York: Elsevier
    • Dunn JC. Indices of partition fuzziness and the detection of clusters in large data sets. In: Gupta MM, editor. Fuzzy automata and decision processes. New York: Elsevier; 1976.
    • (1976) Fuzzy Automata and Decision Processes
    • Dunn, J.C.1
  • 23
    • 0028667335 scopus 로고
    • NERF c-means: Non-Euclidean relational fuzzy clustering
    • Hathaway RJ, Bezdek JC. NERF c-means: Non-Euclidean relational fuzzy clustering. Pattern Recogn 1994;27:429-437.
    • (1994) Pattern Recogn , vol.27 , pp. 429-437
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 25
    • 0036082940 scopus 로고    scopus 로고
    • VAT: A tool for visual assessment of (cluster) tendency
    • Piscataway, NJ: IEEE Press
    • Bezdek JC, Hathaway RJ. VAT: A tool for visual assessment of (cluster) tendency. In: Proc Int Joint Conf on Neural Networks 2002. Piscataway, NJ: IEEE Press; 2002. pp 2225-2230.
    • (2002) Proc Int Joint Conf on Neural Networks 2002 , pp. 2225-2230
    • Bezdek, J.C.1    Hathaway, R.J.2
  • 26
    • 0037410621 scopus 로고    scopus 로고
    • Visual cluster validity for prototype generator clustering models
    • Hathaway RJ, Bezdek JC. Visual cluster validity for prototype generator clustering models. Pattern Recogn Lett 2003;24:1563-1569.
    • (2003) Pattern Recogn Lett , vol.24 , pp. 1563-1569
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 27
    • 24044492227 scopus 로고    scopus 로고
    • BigVAT: Visual assessment of cluster tendency for large data sets
    • Huband J, Bezdek JC, Hathaway RJ. bigVAT: Visual assessment of cluster tendency for large data sets. Pattern Recogn 2005;38:1875-1886.
    • (2005) Pattern Recogn , vol.38 , pp. 1875-1886
    • Huband, J.1    Bezdek, J.C.2    Hathaway, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.