메뉴 건너뛰기




Volumn , Issue , 2013, Pages 476-483

Weakly supervised learning of mid-level features with beta-bernoulli process restricted boltzmann machines

Author keywords

attributes; Beta Bernoulli process; mid level features; Restricted Boltzmann Machine; semantics

Indexed keywords

ATTRIBUTES; COMPUTER VISION PROBLEMS; FEATURE REPRESENTATION; GENERALIZATION PERFORMANCE; MID-LEVEL FEATURES; RESTRICTED BOLTZMANN MACHINE; SEMANTIC CHARACTERIZATIONS; WEAKLY SUPERVISED LEARNING;

EID: 84887350864     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.68     Document Type: Conference Paper
Times cited : (32)

References (30)
  • 3
    • 51949083576 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent object segmentation and classification
    • L. Cao and L. Fei-Fei. Spatially coherent latent topic model for concurrent object segmentation and classification. In ICCV, 2007.
    • (2007) ICCV
    • Cao, L.1    Fei-Fei, L.2
  • 4
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 5
    • 80053437590 scopus 로고    scopus 로고
    • The hierarchical Beta process for convolutional factor analysis and deep learning
    • B. Chen, G. Polatkan, G. Sapiro, D. B. Dunson, and L. Carin. The hierarchical Beta process for convolutional factor analysis and deep learning. In ICML, 2011.
    • (2011) ICML
    • Chen, B.1    Polatkan, G.2    Sapiro, G.3    Dunson, D.B.4    Carin, L.5
  • 8
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 9
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, 2007.
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 2006
    • G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18:2006, 2006.
    • (2006) Neural Computation , vol.18
    • Hinton, G.E.1    Osindero, S.2
  • 13
    • 80052908079 scopus 로고    scopus 로고
    • Sharing features between objects and their attributes
    • S. J. Hwang, F. Sha, and K. Grauman. Sharing features between objects and their attributes. In CVPR, 2011.
    • (2011) CVPR
    • Hwang, S.J.1    Sha, F.2    Grauman, K.3
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 16
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 17
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltzmann machines. In ICML, 2008.
    • (2008) ICML
    • Larochelle, H.1    Bengio, Y.2
  • 19
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011.
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 20
    • 70450219021 scopus 로고    scopus 로고
    • Towards total scene understanding: Classification, annotation and segmentation in an automatic framework
    • L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene understanding:classification, annotation and segmentation in an automatic framework. In CVPR, 2009.
    • (2009) CVPR
    • Li, L.-J.1    Socher, R.2    Fei-Fei, L.3
  • 22
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011.
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 23
    • 71149088102 scopus 로고    scopus 로고
    • Nonparametric factor analysis with Beta process priors
    • J. W. Paisley and L. Carin. Nonparametric factor analysis with Beta process priors. In ICML, 2009.
    • (2009) ICML
    • Paisley, J.W.1    Carin, L.2
  • 24
    • 85162014885 scopus 로고    scopus 로고
    • Replicated softmax: An undirected topic model
    • R. Salakhutdinov and G. Hinton. Replicated softmax: an undirected topic model. In NIPS, 2010.
    • (2010) NIPS
    • Salakhutdinov, R.1    Hinton, G.2
  • 25
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory. Parallel distributed processing: Explorations
    • P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Parallel distributed processing: Explorations in the microstructure of cognition, 1:194-281, 1986.
    • (1986) The Microstructure of Cognition , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 26
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • K. Sohn, D. Y. Jung, H. Lee, and A. Hero III. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In CVPR, 2011.
    • (2011) CVPR
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3    Hero III, A.4
  • 27
    • 84863224200 scopus 로고    scopus 로고
    • Improving image classification using semantic attributes
    • Y. Su and F. Jurie. Improving image classification using semantic attributes. International Journal of Computer Vision, 100(1):59-77, 2012.
    • (2012) International Journal of Computer Vision , vol.100 , Issue.1 , pp. 59-77
    • Su, Y.1    Jurie, F.2
  • 28
    • 77956545291 scopus 로고    scopus 로고
    • Hierarchical Beta processes and the indian buffet process
    • R. Thibaux and M. I. Jordan. Hierarchical Beta processes and the indian buffet process. In AISTATS, 2007.
    • (2007) AISTATS
    • Thibaux, R.1    Jordan, M.I.2
  • 29
    • 80052913382 scopus 로고    scopus 로고
    • A discriminative latent model of object classes and attributes
    • Y. Wang and G. Mori. A discriminative latent model of object classes and attributes. In ECCV, 2010.
    • (2010) ECCV
    • Wang, Y.1    Mori, G.2
  • 30
    • 84863386014 scopus 로고    scopus 로고
    • Non-parametric bayesian dictionary learning for sparse image representations
    • M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and L. Carin. Non-parametric bayesian dictionary learning for sparse image representations. In NIPS. 2009.
    • (2009) NIPS
    • Zhou, M.1    Chen, H.2    Paisley, J.3    Ren, L.4    Sapiro, G.5    Carin, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.