메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 1185-1224

The Indian buffet process: An introduction and review

Author keywords

Beta process; Chinese restaurant processes; Exchangeable distributions; Latent variable models; Markov chain Monte Carlo; Nonparametric Bayes; Sparse binary matrices

Indexed keywords

BETA PROCESS; CHINESE RESTAURANT PROCESSES; EXCHANGEABLE DISTRIBUTIONS; LATENT VARIABLE MODELS; MARKOV CHAIN MONTE CARLO; NON-PARAMETRIC; SPARSE BINARY MATRICES;

EID: 79955846155     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (369)

References (78)
  • 2
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of 'Statistics, 2:1152-1174, 1974.
    • (1974) The Annals of 'Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.1
  • 4
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconv olution
    • A. J. Bell and T. J. Sejnowski. An information maximisation approach to blind separation and blind deconv olution. Neural Computation, 7(6): 1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 0002617436 scopus 로고
    • Ferguson distributions via Polya urn schemes
    • D. Blackwell and J. MacQueen. Ferguson distributions via Polya urn schemes. The Annals of Statistics, 1:353-355, 1973.
    • (1973) The Annals of Statistics , vol.1 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.2
  • 7
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • D. Blei and M. Jordan. Variational inference for Dirichlet process mixtures. Journal of Bayesian Analysis, 1:121-144, 2006.
    • (2006) Journal of Bayesian Analysis , vol.1 , pp. 121-144
    • Blei, D.1    Jordan, M.2
  • 9
    • 0000904732 scopus 로고    scopus 로고
    • A semi-parametric Bayesian model for randomized block designs
    • C. A. Bush and S. N. MacEachern. A semi-parametric Bayesian model for randomized block designs. Biometrika, 83:275-286, 1996.
    • (1996) Biometrika , vol.83 , pp. 275-286
    • Bush, C.A.1    MacEachern, S.N.2
  • 10
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • PII S0018921998069783
    • J.-F. Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE, 86(10):2009-2025, Oct 1998. (Pubitemid 128720291)
    • (1998) Proceedings of the IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 11
    • 34547466115 scopus 로고    scopus 로고
    • Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model
    • W. Chu, Z. Ghahramani, R. Krause, and D. L. Wild. Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model. In BIOCOMPUTING 2006: Proceedings of the Pacific Symposium, volume 11, pages 231-242, 2006.
    • (2006) BIOCOMPUTING 2006: Proceedings of the Pacific Symposium , vol.11 , pp. 231-242
    • Chu, W.1    Ghahramani, Z.2    Krause, R.3    Wild, D.L.4
  • 12
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept
    • P. Comon. Independent component analysis: A new concept. Signal Processing, 36:287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 20
    • 3843139378 scopus 로고    scopus 로고
    • Particle filters for mixture models with an unknown number of components
    • DOI 10.1023/B:STCO.0000009418.04621.cd
    • P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics and Computing, 14:11-21, 2004. (Pubitemid 39046598)
    • (2004) Statistics and Computing , vol.14 , Issue.1 , pp. 11-21
    • Fearnhead, P.1
  • 21
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1:209-230, 1973.
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 22
    • 0001787029 scopus 로고
    • Bayesian density estimation by mixtures of normal distributions
    • M. Rizvi, J. Rustagi, and D. Siegmund, editors., Academic Press, New York
    • T. S. Ferguson. Bayesian density estimation by mixtures of normal distributions. In M. Rizvi, J. Rustagi, and D. Siegmund, editors, Recent Advances in Statistics, pages 287-302. Academic Press, New York, 1983.
    • (1983) Recent Advances in Statistics , pp. 287-302
    • Ferguson, T.S.1
  • 24
  • 25
  • 26
    • 38149119574 scopus 로고    scopus 로고
    • Bayesian nonparametric latent feature models
    • Oxford University Press, Oxford
    • Z. Ghahramani, T. L. Griffiths, and P. Sollich. Bayesian nonparametric latent feature models. In Bayesian Statistics 8. Oxford University Press, Oxford, 2007.
    • (2007) Bayesian Statistics , vol.8
    • Ghahramani, Z.1    Griffiths, T.L.2    Sollich, P.3
  • 29
    • 0035531242 scopus 로고    scopus 로고
    • Modelling heterogeneity with and without the Dirichlet process
    • P. Green and S. Richardson. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics, 28:355-377, 2001.
    • (2001) Scandinavian Journal of Statistics , vol.28 , pp. 355-377
    • Green, P.1    Richardson, S.2
  • 33
    • 0001241617 scopus 로고
    • Nonparametric Bayes estimators based on Beta processes in models for life history data
    • N. L. Hjort. Nonparametric Bayes estimators based on Beta processes in models for life history data. Annals of Statistics, 18:1259-1294, 1990.
    • (1990) Annals of Statistics , vol.18 , pp. 1259-1294
    • Hjort, N.L.1
  • 35
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the Dirichlet Process mixture model
    • DOI 10.1198/1061860043001
    • S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet Process mixture model. Journal of Computational and Graphical Statistics, 13:158-182, 2004. (Pubitemid 38422439)
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.1 , pp. 158-182
    • Jain, S.1    Neal, R.M.2
  • 41
    • 84864028297 scopus 로고    scopus 로고
    • Roweis. Modeling dyadic data with binary latent factors
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
    • E. Meeds, Z. Ghahramani, R. Neal, and S. T. Roweis. Modeling dyadic data with binary latent factors. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems, Cambridge, MA, 2007. MIT Press.
    • (2007) Advances in Neural Information Processing Systems
    • Meeds, E.1    Ghahramani, Z.2    Neal, R.3    Roweis, S.T.4
  • 44
    • 33645494837 scopus 로고    scopus 로고
    • Technical report, MIT Media Lab
    • T. Minka. Bayesian linear regression. Technical report, MIT Media Lab, 2000.http://research.microsoft.com/en-us/um/people/minka/papers/linear.html.
    • (2000) Bayesian Linear Regression
    • Minka, T.1
  • 45
    • 55749097388 scopus 로고    scopus 로고
    • A nonparametric Bayesian model for inferring features from similarity judgments
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
    • D. J. Navarro and T. L. Griffiths. A nonparametric Bayesian model for inferring features from similarity judgments. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, Cambridge, MA, 2007. MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.19
    • Navarro, D.J.1    Griffiths, T.L.2
  • 47
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249-265, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 48
    • 31844452656 scopus 로고    scopus 로고
    • Density modeling and clustering using dirichlet diffusion trees
    • J. M. Bernardo et al. editor
    • R. M. Neal. Density modeling and clustering using dirichlet diffusion trees. In J. M. Bernardo et al., editor, Bayesian Statistics 7, pages 619-629, 2003.
    • (2003) Bayesian Statistics , vol.7 , pp. 619-629
    • Neal, R.M.1
  • 50
    • 85094263505 scopus 로고    scopus 로고
    • Construction of nonparametric Bayesian models from parametric Bayes equations
    • P. Orbanz. Construction of nonparametric Bayesian models from parametric Bayes equations. In Advances in Neural Information Processing Systems 22, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.22
    • Orbanz, P.1
  • 56
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11:305-345, 1999.
    • (1999) Neural Computation , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 58
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650, 1994.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 59
    • 0001869276 scopus 로고
    • Additive clutering: Representation of similarities as combinations of discrete overlapping properties
    • R. Shepard and P. Arabie. Additive clutering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86:87-123, 1979.
    • (1979) Psychological Review , vol.86 , pp. 87-123
    • Shepard, R.1    Arabie, P.2
  • 66
    • 85156220434 scopus 로고    scopus 로고
    • Learning the structure of similarity
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors., MIT Press, Cambridge, MA
    • J. B. Tenenbaum. Learning the structure of similarity. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in neural information processing systems 8, pages 3-9. MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 3-9
    • Tenenbaum, J.B.1
  • 69
    • 85161989394 scopus 로고    scopus 로고
    • The infinite gamma-poisson feature model
    • J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors., MIT Press, Cambridge, MA
    • M. Titsias. The infinite gamma-poisson feature model. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20
    • Titsias, M.1
  • 70
    • 58149416322 scopus 로고
    • Elimination by aspects: A theory of choice
    • A. Tversky. Elimination by aspects: A theory of choice. Psychological Review, 79:281-299, 1972.
    • (1972) Psychological Review , vol.79 , pp. 281-299
    • Tversky, A.1
  • 74
    • 0002612391 scopus 로고
    • Hierarchical priors and mixture models, with application in regression and density estimation
    • P. Freeman and A. Smith, editors., Wiley, New York
    • M. West, P. Muller, and M. Escobar. Hierarchical priors and mixture models, with application in regression and density estimation. In P. Freeman and A. Smith, editors, Aspects of Uncertainty, pages 363-386. Wiley, New York, 1994.
    • (1994) Aspects of Uncertainty , pp. 363-386
    • West, M.1    Muller, P.2    Escobar, M.3
  • 75
    • 54049091313 scopus 로고    scopus 로고
    • Particle filtering for nonparametric Bayesian matrix factorization
    • B. Schölkopf, J. Platt, and T. Hoffman, editors., MIT Press, Cambridge, MA
    • F. Wood and T. L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1513-1520. MIT Press, Cambridge, MA, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1513-1520
    • Wood, F.1    Griffiths, T.L.2
  • 77
    • 0003006472 scopus 로고
    • Developing population codes by minimizing description length
    • Morgan Kaufmann, San Francisco, CA
    • R. S. Zemel and G. E. Hinton. Developing population codes by minimizing description length. In Advances in Neural Information Processing Systems 6. Morgan Kaufmann, San Francisco, CA, 1994.
    • (1994) Advances in Neural Information Processing Systems , vol.6
    • Zemel, R.S.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.