-
2
-
-
0000708831
-
Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
-
C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of 'Statistics, 2:1152-1174, 1974.
-
(1974)
The Annals of 'Statistics
, vol.2
, pp. 1152-1174
-
-
Antoniak, C.1
-
4
-
-
0029411030
-
An information maximisation approach to blind separation and blind deconv olution
-
A. J. Bell and T. J. Sejnowski. An information maximisation approach to blind separation and blind deconv olution. Neural Computation, 7(6): 1129-1159, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.6
, pp. 1129-1159
-
-
Bell, A.J.1
Sejnowski, T.J.2
-
6
-
-
0002617436
-
Ferguson distributions via Polya urn schemes
-
D. Blackwell and J. MacQueen. Ferguson distributions via Polya urn schemes. The Annals of Statistics, 1:353-355, 1973.
-
(1973)
The Annals of Statistics
, vol.1
, pp. 353-355
-
-
Blackwell, D.1
MacQueen, J.2
-
7
-
-
84867186048
-
Variational inference for Dirichlet process mixtures
-
D. Blei and M. Jordan. Variational inference for Dirichlet process mixtures. Journal of Bayesian Analysis, 1:121-144, 2006.
-
(2006)
Journal of Bayesian Analysis
, vol.1
, pp. 121-144
-
-
Blei, D.1
Jordan, M.2
-
8
-
-
8644225400
-
Hierarchical topic models and the nested Chinese restaurant process
-
MIT Press, Cambridge, MA
-
D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. In Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Blei, D.1
Griffiths, T.2
Jordan, M.3
Tenenbaum, J.4
-
9
-
-
0000904732
-
A semi-parametric Bayesian model for randomized block designs
-
C. A. Bush and S. N. MacEachern. A semi-parametric Bayesian model for randomized block designs. Biometrika, 83:275-286, 1996.
-
(1996)
Biometrika
, vol.83
, pp. 275-286
-
-
Bush, C.A.1
MacEachern, S.N.2
-
10
-
-
0032187518
-
Blind signal separation: Statistical principles
-
PII S0018921998069783
-
J.-F. Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE, 86(10):2009-2025, Oct 1998. (Pubitemid 128720291)
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.10
, pp. 2009-2025
-
-
Cardoso, J.-F.1
-
11
-
-
34547466115
-
Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model
-
W. Chu, Z. Ghahramani, R. Krause, and D. L. Wild. Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model. In BIOCOMPUTING 2006: Proceedings of the Pacific Symposium, volume 11, pages 231-242, 2006.
-
(2006)
BIOCOMPUTING 2006: Proceedings of the Pacific Symposium
, vol.11
, pp. 231-242
-
-
Chu, W.1
Ghahramani, Z.2
Krause, R.3
Wild, D.L.4
-
12
-
-
0028416938
-
Independent component analysis: A new concept
-
P. Comon. Independent component analysis: A new concept. Signal Processing, 36:287-314, 1994.
-
(1994)
Signal Processing
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
14
-
-
34547299061
-
-
Technical Report UCB/CSD-04-1330, Computer Science Division, University of California, Berkeley
-
A. d'Aspremont, L. El Ghaoui, I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. Technical Report UCB/CSD-04-1330, Computer Science Division, University of California, Berkeley, 2004.
-
(2004)
A Direct Formulation for Sparse PCA Using Semidefinite Programming
-
-
D'Aspremont, A.1
El Ghaoui, L.2
Jordan, I.3
Lanckriet, G.R.G.4
-
20
-
-
3843139378
-
Particle filters for mixture models with an unknown number of components
-
DOI 10.1023/B:STCO.0000009418.04621.cd
-
P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics and Computing, 14:11-21, 2004. (Pubitemid 39046598)
-
(2004)
Statistics and Computing
, vol.14
, Issue.1
, pp. 11-21
-
-
Fearnhead, P.1
-
21
-
-
0001120413
-
A Bayesian analysis of some nonparametric problems
-
T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1:209-230, 1973.
-
(1973)
The Annals of Statistics
, vol.1
, pp. 209-230
-
-
Ferguson, T.1
-
22
-
-
0001787029
-
Bayesian density estimation by mixtures of normal distributions
-
M. Rizvi, J. Rustagi, and D. Siegmund, editors., Academic Press, New York
-
T. S. Ferguson. Bayesian density estimation by mixtures of normal distributions. In M. Rizvi, J. Rustagi, and D. Siegmund, editors, Recent Advances in Statistics, pages 287-302. Academic Press, New York, 1983.
-
(1983)
Recent Advances in Statistics
, pp. 287-302
-
-
Ferguson, T.S.1
-
25
-
-
0000258816
-
Factorial learning and the em algorithm
-
Morgan Kaufmann, San Francisco, CA
-
Z. Ghahramani. Factorial learning and the EM algorithm. In Advances in Neural Information Processing Systems 7. Morgan Kaufmann, San Francisco, CA, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
-
-
Ghahramani, Z.1
-
26
-
-
38149119574
-
Bayesian nonparametric latent feature models
-
Oxford University Press, Oxford
-
Z. Ghahramani, T. L. Griffiths, and P. Sollich. Bayesian nonparametric latent feature models. In Bayesian Statistics 8. Oxford University Press, Oxford, 2007.
-
(2007)
Bayesian Statistics
, vol.8
-
-
Ghahramani, Z.1
Griffiths, T.L.2
Sollich, P.3
-
27
-
-
0003860037
-
-
Chapman and Hall, Suffolk, UK
-
W.R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice. Chapman and Hall, Suffolk, UK, 1996.
-
(1996)
Markov Chain Monte Carlo in Practice
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
-
28
-
-
33749260354
-
Rasmussen. A choice model with infinitely many latent features
-
New York, ACM Press
-
D. Görür, F. Jäkel, and C. E. Rasmussen. A choice model with infinitely many latent features. In Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), pages 361-368, New York, 2006. ACM Press.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning (ICML 2006)
, pp. 361-368
-
-
Görür, D.1
Jäkel, F.2
Rasmussen, C.E.3
-
29
-
-
0035531242
-
Modelling heterogeneity with and without the Dirichlet process
-
P. Green and S. Richardson. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics, 28:355-377, 2001.
-
(2001)
Scandinavian Journal of Statistics
, vol.28
, pp. 355-377
-
-
Green, P.1
Richardson, S.2
-
33
-
-
0001241617
-
Nonparametric Bayes estimators based on Beta processes in models for life history data
-
N. L. Hjort. Nonparametric Bayes estimators based on Beta processes in models for life history data. Annals of Statistics, 18:1259-1294, 1990.
-
(1990)
Annals of Statistics
, vol.18
, pp. 1259-1294
-
-
Hjort, N.L.1
-
35
-
-
1842486852
-
A split-merge Markov chain Monte Carlo procedure for the Dirichlet Process mixture model
-
DOI 10.1198/1061860043001
-
S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet Process mixture model. Journal of Computational and Graphical Statistics, 13:158-182, 2004. (Pubitemid 38422439)
-
(2004)
Journal of Computational and Graphical Statistics
, vol.13
, Issue.1
, pp. 158-182
-
-
Jain, S.1
Neal, R.M.2
-
38
-
-
33750696648
-
Learning systems of concepts with an infinite relational model
-
C. Kemp, J. B. Tenenbaum, T. L. Grifiths, T. Yamada, and N. Ueda. Learning systems of concepts with an infinite relational model. In Proceedings of the 21st National Conference on Artificial Intelligence, 2006.
-
(2006)
Proceedings of the 21st National Conference on Artificial Intelligence
-
-
Kemp, C.1
Tenenbaum, J.B.2
Grifiths, T.L.3
Yamada, T.4
Ueda, N.5
-
40
-
-
0003905755
-
-
Technical Report Draft 3.7, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, December
-
D. J. C. MacKay. Maximum likelihood and covariant algorithms for independent component analysis. Technical Report Draft 3.7, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, December 1996.
-
(1996)
Maximum Likelihood and Covariant Algorithms for Independent Component Analysis
-
-
MacKay, D.J.C.1
-
41
-
-
84864028297
-
Roweis. Modeling dyadic data with binary latent factors
-
B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
-
E. Meeds, Z. Ghahramani, R. Neal, and S. T. Roweis. Modeling dyadic data with binary latent factors. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems, Cambridge, MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
-
-
Meeds, E.1
Ghahramani, Z.2
Neal, R.3
Roweis, S.T.4
-
44
-
-
33645494837
-
-
Technical report, MIT Media Lab
-
T. Minka. Bayesian linear regression. Technical report, MIT Media Lab, 2000.http://research.microsoft.com/en-us/um/people/minka/papers/linear.html.
-
(2000)
Bayesian Linear Regression
-
-
Minka, T.1
-
45
-
-
55749097388
-
A nonparametric Bayesian model for inferring features from similarity judgments
-
B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
-
D. J. Navarro and T. L. Griffiths. A nonparametric Bayesian model for inferring features from similarity judgments. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, Cambridge, MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
-
-
Navarro, D.J.1
Griffiths, T.L.2
-
47
-
-
77950032550
-
Markov chain sampling methods for Dirichlet process mixture models
-
R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249-265, 2000.
-
(2000)
Journal of Computational and Graphical Statistics
, vol.9
, pp. 249-265
-
-
Neal, R.M.1
-
48
-
-
31844452656
-
Density modeling and clustering using dirichlet diffusion trees
-
J. M. Bernardo et al. editor
-
R. M. Neal. Density modeling and clustering using dirichlet diffusion trees. In J. M. Bernardo et al., editor, Bayesian Statistics 7, pages 619-629, 2003.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 619-629
-
-
Neal, R.M.1
-
50
-
-
85094263505
-
Construction of nonparametric Bayesian models from parametric Bayes equations
-
P. Orbanz. Construction of nonparametric Bayesian models from parametric Bayes equations. In Advances in Neural Information Processing Systems 22, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.22
-
-
Orbanz, P.1
-
56
-
-
0033556862
-
A unifying review of linear Gaussian models
-
S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation, 11:305-345, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 305-345
-
-
Roweis, S.1
Ghahramani, Z.2
-
58
-
-
0000720609
-
A constructive definition of Dirichlet priors
-
J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650, 1994.
-
(1994)
Statistica Sinica
, vol.4
, pp. 639-650
-
-
Sethuraman, J.1
-
59
-
-
0001869276
-
Additive clutering: Representation of similarities as combinations of discrete overlapping properties
-
R. Shepard and P. Arabie. Additive clutering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review, 86:87-123, 1979.
-
(1979)
Psychological Review
, vol.86
, pp. 87-123
-
-
Shepard, R.1
Arabie, P.2
-
61
-
-
33745822252
-
Describing visual scenes using transformed Dirichlet processes
-
Cambridge, MA, MIT Press
-
E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Describing visual scenes using transformed Dirichlet processes. In Advances in Neurai information Processing Systems 18, Cambridge, MA, 2006. MIT Press.
-
(2006)
Advances in Neurai Information Processing Systems
, vol.18
-
-
Sudderth, E.1
Torralba, A.2
Freeman, W.3
Willsky, A.4
-
62
-
-
32344440027
-
Hierarchical Dirichlet processes
-
MIT Press, Cambridge, MA
-
Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes. In Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.17
-
-
Teh, Y.1
Jordan, M.2
Beal, M.3
Blei, D.4
-
66
-
-
85156220434
-
Learning the structure of similarity
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors., MIT Press, Cambridge, MA
-
J. B. Tenenbaum. Learning the structure of similarity. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in neural information processing systems 8, pages 3-9. MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 3-9
-
-
Tenenbaum, J.B.1
-
69
-
-
85161989394
-
The infinite gamma-poisson feature model
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors., MIT Press, Cambridge, MA
-
M. Titsias. The infinite gamma-poisson feature model. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Titsias, M.1
-
70
-
-
58149416322
-
Elimination by aspects: A theory of choice
-
A. Tversky. Elimination by aspects: A theory of choice. Psychological Review, 79:281-299, 1972.
-
(1972)
Psychological Review
, vol.79
, pp. 281-299
-
-
Tversky, A.1
-
74
-
-
0002612391
-
Hierarchical priors and mixture models, with application in regression and density estimation
-
P. Freeman and A. Smith, editors., Wiley, New York
-
M. West, P. Muller, and M. Escobar. Hierarchical priors and mixture models, with application in regression and density estimation. In P. Freeman and A. Smith, editors, Aspects of Uncertainty, pages 363-386. Wiley, New York, 1994.
-
(1994)
Aspects of Uncertainty
, pp. 363-386
-
-
West, M.1
Muller, P.2
Escobar, M.3
-
75
-
-
54049091313
-
Particle filtering for nonparametric Bayesian matrix factorization
-
B. Schölkopf, J. Platt, and T. Hoffman, editors., MIT Press, Cambridge, MA
-
F. Wood and T. L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1513-1520. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1513-1520
-
-
Wood, F.1
Griffiths, T.L.2
-
77
-
-
0003006472
-
Developing population codes by minimizing description length
-
Morgan Kaufmann, San Francisco, CA
-
R. S. Zemel and G. E. Hinton. Developing population codes by minimizing description length. In Advances in Neural Information Processing Systems 6. Morgan Kaufmann, San Francisco, CA, 1994.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
-
-
Zemel, R.S.1
Hinton, G.E.2
|