메뉴 건너뛰기




Volumn , Issue , 2011, Pages 361-368

The hierarchical beta process for convolutional factor analysis and deep learning

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; DEEP LEARNING; FACTOR ANALYSIS; GIBBS SAMPLING; MODEL PARAMETERS; MULTI-LEVEL; MULTITASK LEARNING;

EID: 80053437590     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (22)
  • 1
    • 84877769190 scopus 로고    scopus 로고
    • Learning the structure of deep sparse graphical models
    • Adams, R.P., Wallach, H.M., and Ghahramani, Z. Learning the structure of deep sparse graphical models. In AISTATS, 2010.
    • (2010) AISTATS
    • Adams, R.P.1    Wallach, H.M.2    Ghahramani, Z.3
  • 2
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • Boureau, Y.L., Bach, F., LeCun, Y., and Ponce, J. Learning mid-level features for recognition. In CVPR, 2010.
    • (2010) CVPR
    • Boureau, Y.L.1    Bach, F.2    LeCun, Y.3    Ponce, J.4
  • 4
    • 84864043341 scopus 로고    scopus 로고
    • Infinite latent feature models and the Indian buffet process
    • Griffiths, T. L. and Ghahramani, Z. Infinite latent feature models and the Indian buffet process. In NIPS, 2005.
    • (2005) NIPS
    • Griffiths, T.L.1    Ghahramani, Z.2
  • 6
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 7
    • 77956506018 scopus 로고    scopus 로고
    • Proximal methods for sparse hierarchical dictionary learning
    • Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. Proximal methods for sparse hierarchical dictionary learning. In ICML, 2010.
    • (2010) ICML
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 8
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 9
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffher, P. Gradient-based learning applied to document recognition. Proc. IEEE, 1998.
    • (1998) Proc. IEEE
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffher, P.4
  • 10
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief network model for visual area v2
    • Lee, H., Ekanadham, C., and Ng, A. Y. Sparse deep belief network model for visual area v2. In NIPS, 2008.
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 11
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 12
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online dictionary learning for sparse coding. In ICML, 2009.
    • (2009) ICML
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 13
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
    • Norouzi, M., Ranjbar, M., and Mori, G. Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In CVPR, 2009.
    • (2009) CVPR
    • Norouzi, M.1    Ranjbar, M.2    Mori, G.3
  • 14
    • 71149088102 scopus 로고    scopus 로고
    • Nonparametric factor analysis with beta process priors
    • Paisley, J. and Carin, L. Nonparametric factor analysis with beta process priors. In ICML, 2009.
    • (2009) ICML
    • Paisley, J.1    Carin, L.2
  • 15
    • 85162025802 scopus 로고    scopus 로고
    • The maximal causes of natural scenes are edge filters
    • Puertas, G., Bornschein, J., and Lucke, J. The maximal causes of natural scenes are edge filters. In NIPS, 2010.
    • (2010) NIPS
    • Puertas, G.1    Bornschein, J.2    Lucke, J.3
  • 16
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Ranzato, M., Poultney, C.S., Chopra, S., and LeCun, Y. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006.
    • (2006) NIPS
    • Ranzato, M.1    Poultney, C.S.2    Chopra, S.3    LeCun, Y.4
  • 17
    • 77956545291 scopus 로고    scopus 로고
    • Hierarchical beta processes and the Indian buffet process
    • Thibaux, R. and Jordan, M.I. Hierarchical beta processes and the Indian buffet process. In AISTATS, 2007.
    • (2007) AISTATS
    • Thibaux, R.1    Jordan, M.I.2
  • 18
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.A.4
  • 20
    • 33845566162 scopus 로고    scopus 로고
    • SVM-KNN: Discriminative nearest neighbor classification for visual category recognition
    • Zhang, H., Berg, A. C., Maire, M., and Malik, J. SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In CVPR, 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.C.2    Maire, M.3    Malik, J.4
  • 21
    • 84863386014 scopus 로고    scopus 로고
    • Non-parametric Bayesian dictionary learning for sparse image representations
    • Zhou, M., Chen, H., Paisley, J., Ren, L., Sapiro, G., and Carin, L. Non-parametric Bayesian dictionary learning for sparse image representations. In NIPS, 2009.
    • (2009) NIPS
    • Zhou, M.1    Chen, H.2    Paisley, J.3    Ren, L.4    Sapiro, G.5    Carin, L.6
  • 22
    • 80054763439 scopus 로고    scopus 로고
    • The tree-dependent components of natural images are edge filters
    • Zoran, D. and Weiss, Y. The tree-dependent components of natural images are edge filters. In NIPS, 2009.
    • (2009) NIPS
    • Zoran, D.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.