-
1
-
-
0027595948
-
Tissue engineering
-
R. Langer and J. P. Vacanti, "Tissue engineering," Science, vol. 260, no. 5110, pp. 920-926, 1993.
-
(1993)
Science
, vol.260
, Issue.5110
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
2
-
-
75149125990
-
The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering
-
M. L. Moya, M.-H. Cheng, J.-J. Huang et al., "The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering," Biomaterials, vol. 31, no. 10, pp. 2816-2826, 2010.
-
(2010)
Biomaterials
, vol.31
, Issue.10
, pp. 2816-2826
-
-
Moya, M.L.1
Cheng, M.-H.2
Huang, J.-J.3
-
3
-
-
17144400368
-
Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: Potential implications for tissue engineering of tendons and ligaments
-
S. Hankemeier, M. Keus, J. Zeichen et al., "Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments," Tissue Engineering, vol. 11, no. 1-2, pp. 41-49, 2005.
-
(2005)
Tissue Engineering
, vol.11
, Issue.1-2
, pp. 41-49
-
-
Hankemeier, S.1
Keus, M.2
Zeichen, J.3
-
4
-
-
0034838821
-
Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation
-
H. Masukawa, Y. Miura, I. Sato, Y. Oiso, and A. Suzuki, "Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation," Journal of Cellular Biochemistry, vol. 83, no. 1, pp. 121-128, 2001.
-
(2001)
Journal of Cellular Biochemistry
, vol.83
, Issue.1
, pp. 121-128
-
-
Masukawa, H.1
Miura, Y.2
Sato, I.3
Oiso, Y.4
Suzuki, A.5
-
5
-
-
67349116000
-
Increased FGF-2 secretion and ability to support neurite outgrowth by astrocytes cultured on polyamide nanofibrillar matrices
-
R. Delgado-Rivera, S. L. Harris, I. Ahmed et al., "Increased FGF-2 secretion and ability to support neurite outgrowth by astrocytes cultured on polyamide nanofibrillar matrices," Matrix Biology, vol. 28, no. 3, pp. 137-147, 2009.
-
(2009)
Matrix Biology
, vol.28
, Issue.3
, pp. 137-147
-
-
Delgado-Rivera, R.1
Harris, S.L.2
Ahmed, I.3
-
6
-
-
38349046738
-
Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis
-
J. A. Rophael, R. O. Craft, J. A. Palmer et al., "Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis," American Journal of Pathology, vol. 171, no. 6, pp. 2048-2057, 2007.
-
(2007)
American Journal of Pathology
, vol.171
, Issue.6
, pp. 2048-2057
-
-
Rophael, J.A.1
Craft, R.O.2
Palmer, J.A.3
-
7
-
-
29244464674
-
Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds
-
F. M. Andreopoulos and I. Persaud, "Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds," Biomaterials, vol. 27, no. 11, pp. 2468-2476, 2006.
-
(2006)
Biomaterials
, vol.27
, Issue.11
, pp. 2468-2476
-
-
Andreopoulos, F.M.1
Persaud, I.2
-
8
-
-
20444412662
-
Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor
-
S. Cai, Y. Liu, Z. S. Xiao, and G. D. Prestwich, "Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor," Biomaterials, vol. 26, no. 30, pp. 6054-6067, 2005.
-
(2005)
Biomaterials
, vol.26
, Issue.30
, pp. 6054-6067
-
-
Cai, S.1
Liu, Y.2
Xiao, Z.S.3
Prestwich, G.D.4
-
9
-
-
67849094098
-
A star-PEGheparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases
-
U. Freudenberg, A. Hermann, P. B. Welzel et al., "A star-PEGheparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases," Biomaterials, vol. 30, no. 28, pp. 5049-5060, 2009.
-
(2009)
Biomaterials
, vol.30
, Issue.28
, pp. 5049-5060
-
-
Freudenberg, U.1
Hermann, A.2
Welzel, P.B.3
-
10
-
-
0035081241
-
Fibroblast Growth Factors
-
article no. 3005
-
D. M. Ornitz and N. Itoh, "Fibroblast growth factors," Genome Biology, vol. 2, no. 3, article no. 3005, 2001.
-
(2001)
Genome Biology
, vol.2
, Issue.3
-
-
Ornitz, D.M.1
Itoh, N.2
-
11
-
-
33751113439
-
FGF signaling network in the gastrointestinal tract (review)
-
M. Katoh and M. Katoh, "FGF signaling network in the gastrointestinal tract (review)," International journal of oncology, vol. 29, no. 1, pp. 163-168, 2006.
-
(2006)
International Journal of Oncology
, vol.29
, Issue.1
, pp. 163-168
-
-
Katoh, M.1
Katoh, M.2
-
12
-
-
75149170979
-
Fibroblast growth factor signalling: From development to cancer
-
N. Turner and R. Grose, "Fibroblast growth factor signalling: from development to cancer," Nature Reviews Cancer, vol. 10, no. 2, pp. 116-129, 2010.
-
(2010)
Nature Reviews Cancer
, vol.10
, Issue.2
, pp. 116-129
-
-
Turner, N.1
Grose, R.2
-
13
-
-
35349007958
-
The Fgf families in humans, mice, and zebrafish: Their evolutional processes and roles in development, metabolism, and disease
-
N. Itoh, "The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease," Biological and Pharmaceutical Bulletin, vol. 30, no. 10, pp. 1819-1825, 2007.
-
(2007)
Biological and Pharmaceutical Bulletin
, vol.30
, Issue.10
, pp. 1819-1825
-
-
Itoh, N.1
-
14
-
-
18144383021
-
Cellular signaling by fibroblast growth factor receptors
-
V. P. Eswarakumar, I. Lax, and J. Schlessinger, "Cellular signaling by fibroblast growth factor receptors," Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 139-149, 2005.
-
(2005)
Cytokine and Growth Factor Reviews
, vol.16
, Issue.2
, pp. 139-149
-
-
Eswarakumar, V.P.1
Lax, I.2
Schlessinger, J.3
-
15
-
-
0026649742
-
Fibroblast growth factor receptor tyrosine kinases: Molecular analysis and signal transduction
-
M. Jaye, J. Schlessinger, and C. A. Dionne, "Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction," Biochimica et Biophysica Acta, vol. 1135, no. 2, pp. 185-199, 1992.
-
(1992)
Biochimica Et Biophysica Acta
, vol.1135
, Issue.2
, pp. 185-199
-
-
Jaye, M.1
Schlessinger, J.2
Dionne, C.A.3
-
16
-
-
33846615392
-
Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia
-
M. Tekin, B. Ö. Hişmi, S. Fitoz et al., "Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia," American Journal of Human Genetics, vol. 80, no. 2, pp. 338-344, 2007.
-
(2007)
American Journal of Human Genetics
, vol.80
, Issue.2
, pp. 338-344
-
-
Tekin, M.1
Hişmi, B.Ö.2
Fitoz, S.3
-
17
-
-
48749120107
-
Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice
-
J. Falardeau, W. C. J. Chung, A. Beenken et al., "Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice," Journal of Clinical Investigation, vol. 118, no. 8, pp. 2822-2831, 2008.
-
(2008)
Journal of Clinical Investigation
, vol.118
, Issue.8
, pp. 2822-2831
-
-
Falardeau, J.1
Chung, W.C.J.2
Beenken, A.3
-
18
-
-
33645474348
-
LADD syndrome is caused by FGF10 mutations
-
J. M. Milunsky, G. Zhao, T. A. Maher, R. Colby, and D. B. Everman, "LADD syndrome is caused by FGF10 mutations," Clinical Genetics, vol. 69, no. 4, pp. 349-354, 2006.
-
(2006)
Clinical Genetics
, vol.69
, Issue.4
, pp. 349-354
-
-
Milunsky, J.M.1
Zhao, G.2
Maher, T.A.3
Colby, R.4
Everman, D.B.5
-
19
-
-
0033763097
-
Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23
-
K. E. White, W. E. Evans, J. L. H. O'Riordan et al., "Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23," Nature Genetics, vol. 26, no. 3, pp. 345-348, 2000.
-
(2000)
Nature Genetics
, vol.26
, Issue.3
, pp. 345-348
-
-
White, K.E.1
Evans, W.E.2
O'Riordan, J.L.H.3
-
20
-
-
0034644539
-
Cell signaling by receptor tyrosine kinases
-
J. Schlessinger, "Cell signaling by receptor tyrosine kinases," Cell, vol. 103, no. 2, pp. 211-225, 2000.
-
(2000)
Cell
, vol.103
, Issue.2
, pp. 211-225
-
-
Schlessinger, J.1
-
21
-
-
0034997845
-
Mitogenactivated protein (MAP) kinase pathways: Regulation and physiological functions
-
G. Pearson, F. Robinson, T. B. Gibson et al., "Mitogenactivated protein (MAP) kinase pathways: regulation and physiological functions," Endocrine Reviews, vol. 22, no. 2, pp. 153-183, 2001.
-
(2001)
Endocrine Reviews
, vol.22
, Issue.2
, pp. 153-183
-
-
Pearson, G.1
Robinson, F.2
Gibson, T.B.3
-
22
-
-
0032740993
-
Modulating nuclear receptor function: May the phos be with you
-
D. Shao and M. A. Lazar, "Modulating nuclear receptor function: may the phos be with you," Journal of Clinical Investigation, vol. 103, no. 12, pp. 1617-1618, 1999.
-
(1999)
Journal of Clinical Investigation
, vol.103
, Issue.12
, pp. 1617-1618
-
-
Shao, D.1
Lazar, M.A.2
-
23
-
-
0037076329
-
FRS2α attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl
-
A. Wong, B. Lamothe, A. Lee, J. Schlessinger, and I. Lax, "FRS2α attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6684-6689, 2002.
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.10
, pp. 6684-6689
-
-
Wong, A.1
Lamothe, B.2
Lee, A.3
Schlessinger, J.4
Lax, I.5
-
24
-
-
0036771763
-
The docking protein FRS2α controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors
-
I. Lax, A. Wong, B. Lamothe et al., "The docking protein FRS2α controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors," Molecular Cell, vol. 10, no. 4, pp. 709-719, 2002.
-
(2002)
Molecular Cell
, vol.10
, Issue.4
, pp. 709-719
-
-
Lax, I.1
Wong, A.2
Lamothe, B.3
-
25
-
-
18144415072
-
Mechanisms underlying differential responses to FGF signaling
-
L. Dailey, D. Ambrosetti, A. Mansukhani, and C. Basilico, "Mechanisms underlying differential responses to FGF signaling," Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 233-247, 2005.
-
(2005)
Cytokine and Growth Factor Reviews
, vol.16
, Issue.2
, pp. 233-247
-
-
Dailey, L.1
Ambrosetti, D.2
Mansukhani, A.3
Basilico, C.4
-
26
-
-
2942744501
-
The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway
-
B. Lamothe, M. Yamada, U. Schaeper, W. Birchmeier, I. Lax, and J. Schlessinger, "The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway," Molecular and Cellular Biology, vol. 24, no. 13, pp. 5657-5666, 2004.
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.13
, pp. 5657-5666
-
-
Lamothe, B.1
Yamada, M.2
Schaeper, U.3
Birchmeier, W.4
Lax, I.5
Schlessinger, J.6
-
27
-
-
1342310738
-
The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling
-
R. T. Böttcher, N. Pollet, H. Delius, and C. Niehrs, "The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling," Nature Cell Biology, vol. 6, no. 1, pp. 38-44, 2003.
-
(2003)
Nature Cell Biology
, vol.6
, Issue.1
, pp. 38-44
-
-
Böttcher, R.T.1
Pollet, N.2
Delius, H.3
Niehrs, C.4
-
28
-
-
0025941527
-
A tyrosinephosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (flg) is a binding site for the SH2 domain of phospholipase C-γ1
-
M. Mohammadi, A. M. Honegger, D. Rotin et al., "A tyrosinephosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (flg) is a binding site for the SH2 domain of phospholipase C-γ1," Molecular and Cellular Biology, vol. 11, no. 10, pp. 5068-5078, 1991.
-
(1991)
Molecular and Cellular Biology
, vol.11
, Issue.10
, pp. 5068-5078
-
-
Mohammadi, M.1
Honegger, A.M.2
Rotin, D.3
-
29
-
-
0026731562
-
Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but notmitogenesis
-
K. G. Peters, J. Marie, E. Wilson et al., "Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but notmitogenesis," Nature, vol. 358, no. 6388, pp. 678-681, 1992.
-
(1992)
Nature
, vol.358
, Issue.6388
, pp. 678-681
-
-
Peters, K.G.1
Marie, J.2
Wilson, E.3
-
30
-
-
0028236448
-
Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells
-
T. Spivak-Kroizman, M. Mohammadi, P. Hu, M. Jaye, J. Schlessinger, and I. Lax, "Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells," Journal of Biological Chemistry, vol. 269, no. 20, pp. 14419-14423, 1994.
-
(1994)
Journal of Biological Chemistry
, vol.269
, Issue.20
, pp. 14419-14423
-
-
Spivak-Kroizman, T.1
Mohammadi, M.2
Hu, P.3
Jaye, M.4
Schlessinger, J.5
Lax, I.6
-
31
-
-
0034653487
-
Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway
-
K. Kolkova, V. Novitskaya, N. Pedersen, V. Berezin, and E. Bock, "Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway," Journal of Neuroscience, vol. 20, no. 6, pp. 2238-2246, 2000.
-
(2000)
Journal of Neuroscience
, vol.20
, Issue.6
, pp. 2238-2246
-
-
Kolkova, K.1
Novitskaya, V.2
Pedersen, N.3
Berezin, V.4
Bock, E.5
-
32
-
-
0032562232
-
Induction of neoangiogenesis in ischemic myocardium by human growth factors: First clinical results of a new treatment of coronary heart disease
-
B. Schumacher, P. Peecher, B. U. Von Specht, and T. Stegmann, "Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease," Circulation, vol. 97, no. 7, pp. 645-650, 1998.
-
(1998)
Circulation
, vol.97
, Issue.7
, pp. 645-650
-
-
Schumacher, B.1
Peecher, P.2
von Specht, B.U.3
Stegmann, T.4
-
33
-
-
18344417427
-
Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris
-
E. F. Unger, L. Goncalves, S. E. Epstein et al., "Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris," American Journal of Cardiology, vol. 85, no. 12, pp. 1414-1419, 2000.
-
(2000)
American Journal of Cardiology
, vol.85
, Issue.12
, pp. 1414-1419
-
-
Unger, E.F.1
Goncalves, L.2
Epstein, S.E.3
-
34
-
-
0033034205
-
Intracoronary and intravenous administration of basic fibroblast growth factor: Myocardial and tissue distribution
-
R. J. Laham, M. Rezaee, M. Post et al., "Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution," Drug Metabolism and Disposition, vol. 27, no. 7, pp. 821-826, 1999.
-
(1999)
Drug Metabolism and Disposition
, vol.27
, Issue.7
, pp. 821-826
-
-
Laham, R.J.1
Rezaee, M.2
Post, M.3
-
35
-
-
0034783270
-
A randomized Phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer
-
W. D. Figg, W. Dahut, P. Duray et al., "A randomized Phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer," Clinical Cancer Research, vol. 7, no. 7, pp. 1888-1893, 2001.
-
(2001)
Clinical Cancer Research
, vol.7
, Issue.7
, pp. 1888-1893
-
-
Figg, W.D.1
Dahut, W.2
Duray, P.3
-
36
-
-
0033980850
-
Continuous low dose Thalidomide: A phase II study in advanced melanoma, renal cell, ovarian and breast cancer
-
T. Eisen, C. Boshoff, I. Mak et al., "Continuous low dose Thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer," British Journal of Cancer, vol. 82, no. 4, pp. 812-817, 2000.
-
(2000)
British Journal of Cancer
, vol.82
, Issue.4
, pp. 812-817
-
-
Eisen, T.1
Boshoff, C.2
Mak, I.3
-
37
-
-
34548446034
-
Effects of Ad5FGF-4 in patients with angina: An analysis of pooled data from the AGENT-3 and AGENT-4 trials
-
T. D. Henry, C. L. Grines, M. W. Watkins et al., "Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials," Journal of the American College of Cardiology, vol. 50, no. 11, pp. 1038-1046, 2007.
-
(2007)
Journal of the American College of Cardiology
, vol.50
, Issue.11
, pp. 1038-1046
-
-
Henry, T.D.1
Grines, C.L.2
Watkins, M.W.3
-
38
-
-
0027931643
-
FGF5 as a regulator of the hair growth cycle: Evidence fromtargeted and spontaneous mutations
-
J. M. Hébert, T. Rosenquist, J. Götz, and G. R. Martin, "FGF5 as a regulator of the hair growth cycle: evidence fromtargeted and spontaneous mutations," Cell, vol. 78, no. 6, pp. 1017-1025, 1994.
-
(1994)
Cell
, vol.78
, Issue.6
, pp. 1017-1025
-
-
Hébert, J.M.1
Rosenquist, T.2
Götz, J.3
Martin, G.R.4
-
39
-
-
10344242939
-
Palifermin for oral mucositis after intensive therapy for hematologic cancers
-
R. Spielberger, P. Stiff,W. Bensinger et al., "Palifermin for oral mucositis after intensive therapy for hematologic cancers," New England Journal of Medicine, vol. 351, no. 25, pp. 2590-2598, 2004.
-
(2004)
New England Journal of Medicine
, vol.351
, Issue.25
, pp. 2590-2598
-
-
Spielberger, R.1
Stiff, P.2
Bensinger, W.3
-
40
-
-
20944443514
-
Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis
-
E. E. Moore, A. M. Bendele, D. L. Thompson et al., "Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis," Osteoarthritis and Cartilage, vol. 13, no. 7, pp. 623-631, 2005.
-
(2005)
Osteoarthritis and Cartilage
, vol.13
, Issue.7
, pp. 623-631
-
-
Moore, E.E.1
Bendele, A.M.2
Thompson, D.L.3
-
41
-
-
0036086285
-
A mouse model of hepatocellular carcinoma: Ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice
-
K. Nicholes, S. Guillet, E. Tomlinson et al., "A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice," American Journal of Pathology, vol. 160, no. 6, pp. 2295-2307, 2002.
-
(2002)
American Journal of Pathology
, vol.160
, Issue.6
, pp. 2295-2307
-
-
Nicholes, K.1
Guillet, S.2
Tomlinson, E.3
-
42
-
-
85047689727
-
Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model
-
Y. Takagi, J. Takahashi, H. Saiki et al., "Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model," Journal of Clinical Investigation, vol. 115, no. 1, pp. 102-109, 2005.
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.1
, pp. 102-109
-
-
Takagi, Y.1
Takahashi, J.2
Saiki, H.3
-
43
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
T. Coskun, H. A. Bina, M. A. Schneider et al., "Fibroblast growth factor 21 corrects obesity in mice," Endocrinology, vol. 149, no. 12, pp. 6018-6027, 2008.
-
(2008)
Endocrinology
, vol.149
, Issue.12
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
-
44
-
-
18044391352
-
The neutralization of FGF-23 ameliorates hypophosphatemia and rickets in Hyp mice
-
Y. Aono, T. Simada et al., "The neutralization of FGF-23 ameliorates hypophosphatemia and rickets in Hyp mice," Journal of Bone and Mineral Research, vol. 18, no. 2, p. S16, 2003.
-
(2003)
Journal of Bone and Mineral Research
, vol.18
, Issue.2
-
-
Aono, Y.1
Simada, T.2
-
45
-
-
9444289881
-
Fibroblast growth factor 1: A key regulator of human adipogenesis
-
L. Hutley, W. Shurety, F. Newell et al., "Fibroblast growth factor 1: a key regulator of human adipogenesis," Diabetes, vol. 53, no. 12, pp. 3097-3106, 2004.
-
(2004)
Diabetes
, vol.53
, Issue.12
, pp. 3097-3106
-
-
Hutley, L.1
Shurety, W.2
Newell, F.3
-
46
-
-
0028231686
-
Fibroblast growth factors modulate intestinal epithelial cell growth and migration
-
A. U. Dignass, S. Tsunekawa, and D. K. Podolsky, "Fibroblast growth factors modulate intestinal epithelial cell growth and migration," Gastroenterology, vol. 106, no. 5, pp. 1254-1262, 1994.
-
(1994)
Gastroenterology
, vol.106
, Issue.5
, pp. 1254-1262
-
-
Dignass, A.U.1
Tsunekawa, S.2
Podolsky, D.K.3
-
47
-
-
0032477721
-
Basic fibroblast growth factor induces cell migration and proliferation after gliaspecific gene transfer in mice
-
E. C. Holland and H. E. Varmus, "Basic fibroblast growth factor induces cell migration and proliferation after gliaspecific gene transfer in mice," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 1218-1223, 1998.
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.3
, pp. 1218-1223
-
-
Holland, E.C.1
Varmus, H.E.2
-
48
-
-
0025371614
-
Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro
-
M. Murphy, J. Drago, and P. F. Bartlett, "Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro," Journal of Neuroscience Research, vol. 25, no. 4, pp. 463-475, 1990.
-
(1990)
Journal of Neuroscience Research
, vol.25
, Issue.4
, pp. 463-475
-
-
Murphy, M.1
Drago, J.2
Bartlett, P.F.3
-
49
-
-
0032509321
-
Promotion to trophoblast stem cell proliferation by FGF4
-
S. Tanaka, T. Kunath, A.-K. Hadjantonakis, A. Nagy, and J. Rossant, "Promotion to trophoblast stem cell proliferation by FGF4," Science, vol. 282, no. 5396, pp. 2072-2075, 1998.
-
(1998)
Science
, vol.282
, Issue.5396
, pp. 2072-2075
-
-
Tanaka, S.1
Kunath, T.2
Hadjantonakis, A.-K.3
Nagy, A.4
Rossant, J.5
-
50
-
-
0024324070
-
Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth
-
P.W. Finch, J. S. Rubin, T. Miki, D. Ron, and S. A. Aaronson, "Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth," Science, vol. 245, no. 4919, pp. 752-755, 1989.
-
(1989)
Science
, vol.245
, Issue.4919
, pp. 752-755
-
-
Finch, P.W.1
Rubin, J.S.2
Miki, T.3
Ron, D.4
Aaronson, S.A.5
-
51
-
-
0032825023
-
Prostatic growth and development are regulated by FGF10
-
A. A. Thomson and G. R. Cunha, "Prostatic growth and development are regulated by FGF10," Development, vol. 126, no. 16, pp. 3693-3701, 1999.
-
(1999)
Development
, vol.126
, Issue.16
, pp. 3693-3701
-
-
Thomson, A.A.1
Cunha, G.R.2
-
52
-
-
0036205735
-
FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis
-
N. Ohbayashi, M. Shibayama, Y. Kurotaki et al., "FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis," Genes and Development, vol. 16, no. 7, pp. 870-879, 2002.
-
(2002)
Genes and Development
, vol.16
, Issue.7
, pp. 870-879
-
-
Ohbayashi, N.1
Shibayama, M.2
Kurotaki, Y.3
-
53
-
-
0033770129
-
Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: Immunohistochemistry and antibody perturbation
-
V. Taylor, C. Zgraggen, R. Naef, and U. Suter, "Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunohistochemistry and antibody perturbation," Journal of Neuroscience Research, vol. 62, no. 1, pp. 40-55, 2000.
-
(2000)
Journal of Neuroscience Research
, vol.62
, Issue.1
, pp. 40-55
-
-
Taylor, V.1
Zgraggen, C.2
Naef, R.3
Suter, U.4
-
54
-
-
0030910743
-
Fibroblast growth factors 2 and 4 stimulate migration of mouse embryonic limb myogenic cells
-
S. E. Webb, K. K. H. Lee, M. K. Tang, and D. A. Ede, "Fibroblast growth factors 2 and 4 stimulate migration of mouse embryonic limb myogenic cells," Developmental Dynamics, vol. 209, no. 2, pp. 206-216, 1997.
-
(1997)
Developmental Dynamics
, vol.209
, Issue.2
, pp. 206-216
-
-
Webb, S.E.1
Lee, K.K.H.2
Tang, M.K.3
Ede, D.A.4
-
55
-
-
0027185945
-
Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes
-
R. Tsuboi, C. Sato, Y. Kurita, D. Ron, J. S. Rubin, and H. Ogawa, "Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes," Journal of Investigative Dermatology, vol. 101, no. 1, pp. 49-53, 1993.
-
(1993)
Journal of Investigative Dermatology
, vol.101
, Issue.1
, pp. 49-53
-
-
Tsuboi, R.1
Sato, C.2
Kurita, Y.3
Ron, D.4
Rubin, J.S.5
Ogawa, H.6
-
56
-
-
0033973219
-
Chemotactic migration of mesencephalic neural crest cells in the mouse
-
Y. Kubota and K. Ito, "Chemotactic migration of mesencephalic neural crest cells in the mouse," Developmental Dynamics, vol. 217, no. 2, pp. 170-179, 2000.
-
(2000)
Developmental Dynamics
, vol.217
, Issue.2
, pp. 170-179
-
-
Kubota, Y.1
Ito, K.2
-
57
-
-
0027305161
-
Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation
-
S. Werner, W. Weinberg, X. Liao et al., "Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation," EMBO Journal, vol. 12, no. 7, pp. 2635-2643, 1993.
-
(1993)
EMBO Journal
, vol.12
, Issue.7
, pp. 2635-2643
-
-
Werner, S.1
Weinberg, W.2
Liao, X.3
-
58
-
-
0034648765
-
Angiogenesis in cancer and other diseases
-
P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other diseases," Nature, vol. 407, no. 6801, pp. 249-257, 2000.
-
(2000)
Nature
, vol.407
, Issue.6801
, pp. 249-257
-
-
Carmeliet, P.1
Jain, R.K.2
-
59
-
-
0034076189
-
Mechanisms of angiogenesis and arteriogenesis
-
P. Carmeliet, "Mechanisms of angiogenesis and arteriogenesis," Nature Medicine, vol. 6, no. 4, pp. 389-395, 2000.
-
(2000)
Nature Medicine
, vol.6
, Issue.4
, pp. 389-395
-
-
Carmeliet, P.1
-
60
-
-
18144364350
-
Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis
-
M. Presta, P. Dell'Era, S. Mitola, E. Moroni, R. Ronca, and M. Rusnati, "Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis," Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 159-178, 2005.
-
(2005)
Cytokine and Growth Factor Reviews
, vol.16
, Issue.2
, pp. 159-178
-
-
Presta, M.1
Dell'Era, P.2
Mitola, S.3
Moroni, E.4
Ronca, R.5
Rusnati, M.6
-
61
-
-
0036789313
-
The role of fibroblast growth factors in vascular development
-
S. Javerzat, P. Auguste, and A. Bikfalvi, "The role of fibroblast growth factors in vascular development," Trends inMolecular Medicine, vol. 8, no. 10, pp. 483-489, 2002.
-
(2002)
Trends InMolecular Medicine
, vol.8
, Issue.10
, pp. 483-489
-
-
Javerzat, S.1
Auguste, P.2
Bikfalvi, A.3
-
62
-
-
0000018640
-
Biodegradable polymers
-
T. Tsuruta, Ed., pp. 163-189, CRC Press, Boca Raton, Fla, USA
-
Y. Kimura, "Biodegradable polymers," in Biomedical Applications of Polymeric Materials, T. Tsuruta, Ed., pp. 163-189, CRC Press, Boca Raton, Fla, USA, 1993.
-
Biomedical Applications of Polymeric Materials
, pp. 1993
-
-
Kimura, Y.1
-
63
-
-
0035504735
-
Development of biodegradable porous scaffolds for tissue engineering
-
G. Chen, T. Ushida, and T. Tateishi, "Development of biodegradable porous scaffolds for tissue engineering," Materials Science and Engineering C, vol. 17, no. 1-2, pp. 63-69, 2001.
-
(2001)
Materials Science and Engineering C
, vol.17
, Issue.1-2
, pp. 63-69
-
-
Chen, G.1
Ushida, T.2
Tateishi, T.3
-
64
-
-
37349091115
-
Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends
-
J. F. Mano, G. A. Silva, H. S. Azevedo et al., "Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends," Journal of the Royal Society Interface, vol. 4, no. 17, pp. 999-1030, 2007.
-
(2007)
Journal of the Royal Society Interface
, vol.4
, Issue.17
, pp. 999-1030
-
-
Mano, J.F.1
Silva, G.A.2
Azevedo, H.S.3
-
65
-
-
34249930633
-
Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications
-
P. B. Malafaya, G. A. Silva, and R. L. Reis, "Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications," Advanced Drug Delivery Reviews, vol. 59, no. 4-5, pp. 207-233, 2007.
-
(2007)
Advanced Drug Delivery Reviews
, vol.59
, Issue.4-5
, pp. 207-233
-
-
Malafaya, P.B.1
Silva, G.A.2
Reis, R.L.3
-
66
-
-
34548811949
-
Gelatin/chitosan/ hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering
-
H. Tan, Y. Gong, L. Lao, Z. Mao, and C. Gao, "Gelatin/chitosan/ hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering," Journal of Materials Science: Materials in Medicine, vol. 18, no. 10, pp. 1961-1968, 2007.
-
(2007)
Journal of Materials Science: Materials In Medicine
, vol.18
, Issue.10
, pp. 1961-1968
-
-
Tan, H.1
Gong, Y.2
Lao, L.3
Mao, Z.4
Gao, C.5
-
67
-
-
0025976838
-
Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor
-
A. Yayon, M. Klagsbrun, J. D. Esko, P. Leder, and D. M. Ornitz, "Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor," Cell, vol. 64, no. 4, pp. 841-848, 1991.
-
(1991)
Cell
, vol.64
, Issue.4
, pp. 841-848
-
-
Yayon, A.1
Klagsbrun, M.2
Esko, J.D.3
Leder, P.4
Ornitz, D.M.5
-
68
-
-
0033984324
-
Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices
-
M. J. B. Wissink, R. Beernink, A. A. Poot et al., "Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices," Journal of Controlled Release, vol. 64, no. 1-3, pp. 103-114, 2000.
-
(2000)
Journal of Controlled Release
, vol.64
, Issue.1-3
, pp. 103-114
-
-
Wissink, M.J.B.1
Beernink, R.2
Poot, A.A.3
-
69
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering," Biomaterials, vol. 27, no. 18, pp. 3413-3431, 2006.
-
(2006)
Biomaterials
, vol.27
, Issue.18
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.Z.2
Blaker, J.J.3
Boccaccini, A.R.4
-
70
-
-
0001325555
-
Chemical modification of polymer surfaces: A review
-
L. S. Penn and H. Wang, "Chemical modification of polymer surfaces: a review," Polymers for Advanced Technologies, vol. 5, no. 12, pp. 809-817, 1994.
-
(1994)
Polymers For Advanced Technologies
, vol.5
, Issue.12
, pp. 809-817
-
-
Penn, L.S.1
Wang, H.2
-
71
-
-
70349090606
-
Smooth muscle cell adhesion in surface-modified three-dimensional copolymer scaffolds prepared from co-continuous blends
-
H. Bramfeldt, P. Sarazin, and P. Vermette, "Smooth muscle cell adhesion in surface-modified three-dimensional copolymer scaffolds prepared from co-continuous blends," Journal of Biomedical Materials Research A, vol. 91, no. 1, pp. 305-315, 2009.
-
(2009)
Journal of Biomedical Materials Research A
, vol.91
, Issue.1
, pp. 305-315
-
-
Bramfeldt, H.1
Sarazin, P.2
Vermette, P.3
-
72
-
-
0035397504
-
Biomedical applications of polymer-composite materials: A review
-
S. Ramakrishna, J. Mayer, E. Wintermantel, and K.W. Leong, "Biomedical applications of polymer-composite materials: a review," Composites Science and Technology, vol. 61, no. 9, pp. 1189-1224, 2001.
-
(2001)
Composites Science and Technology
, vol.61
, Issue.9
, pp. 1189-1224
-
-
Ramakrishna, S.1
Mayer, J.2
Wintermantel, E.3
Leong, K.W.4
-
73
-
-
0032120696
-
Bioceramics
-
L. L. Hench, "Bioceramics," Journal of the American Ceramic Society, vol. 81, no. 7, pp. 1705-1727, 1998.
-
(1998)
Journal of the American Ceramic Society
, vol.81
, Issue.7
, pp. 1705-1727
-
-
Hench, L.L.1
-
74
-
-
77954453306
-
Orthopaedic applications of bone graft & graft substitutes: A review
-
S. K. Nandi, S. Roy, P. Mukherjee, B. Kundu, D. K. De, and D. Basu, "Orthopaedic applications of bone graft & graft substitutes: a review," Indian Journal ofMedical Research, vol. 132, no. 7, pp. 15-30, 2010.
-
(2010)
Indian Journal OfMedical Research
, vol.132
, Issue.7
, pp. 15-30
-
-
Nandi, S.K.1
Roy, S.2
Mukherjee, P.3
Kundu, B.4
De, D.K.5
Basu, D.6
-
75
-
-
33750608853
-
Challenges in tissue engineering
-
Y. Ikada, "Challenges in tissue engineering," Journal of the Royal Society Interface, vol. 3, no. 10, pp. 589-601, 2006.
-
(2006)
Journal of the Royal Society Interface
, vol.3
, Issue.10
, pp. 589-601
-
-
Ikada, Y.1
-
76
-
-
0036132364
-
Bioactive sol-gel foams for tissue repair
-
O. Akkus, J. Pujol, and G. Qi, "Bioactive sol-gel foams for tissue repair," Journal of Biomedical Materials Research, vol. 59, no. 2, pp. 340-348, 2002.
-
(2002)
Journal of Biomedical Materials Research
, vol.59
, Issue.2
, pp. 340-348
-
-
Akkus, O.1
Pujol, J.2
Qi, G.3
-
77
-
-
0025978275
-
Bioactive glass ceramics: Properties and applications
-
T. Kokubo, "Bioactive glass ceramics: properties and applications," Biomaterials, vol. 12, no. 2, pp. 155-163, 1991.
-
(1991)
Biomaterials
, vol.12
, Issue.2
, pp. 155-163
-
-
Kokubo, T.1
-
78
-
-
0019447856
-
Calcium phosphate ceramics as hard tissue prosthetics
-
M. Jarcho, "Calcium phosphate ceramics as hard tissue prosthetics," Clinical Orthopaedics and Related Research, vol. 157, pp. 259-278, 1981.
-
(1981)
Clinical Orthopaedics and Related Research
, vol.157
, pp. 259-278
-
-
Jarcho, M.1
-
79
-
-
40649116893
-
Bioceramics: Past, present and for the future
-
S. M. Best, A. E. Porter, E. S. Thian, and J. Huang, "Bioceramics: past, present and for the future," Journal of the European Ceramic Society, vol. 28, no. 7, pp. 1319-1327, 2008.
-
(2008)
Journal of the European Ceramic Society
, vol.28
, Issue.7
, pp. 1319-1327
-
-
Best, S.M.1
Porter, A.E.2
Thian, E.S.3
Huang, J.4
-
80
-
-
33745251044
-
Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2
-
H. Komaki, T. Tanaka, M. Chazono, and T. Kikuchi, "Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2," Biomaterials, vol. 27, no. 29, pp. 5118-5126, 2006.
-
(2006)
Biomaterials
, vol.27
, Issue.29
, pp. 5118-5126
-
-
Komaki, H.1
Tanaka, T.2
Chazono, M.3
Kikuchi, T.4
-
81
-
-
5444231507
-
Sitespecific delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responses in vivo
-
S. S. Kelpke, K. R. Zinn, L.W. Rue, and J. A. Thompson, "Sitespecific delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responses in vivo," Journal of BiomedicalMaterials Research - Part A, vol. 71, no. 2, pp. 316-325, 2004.
-
(2004)
Journal of BiomedicalMaterials Research - Part A
, vol.71
, Issue.2
, pp. 316-325
-
-
Kelpke, S.S.1
Zinn, K.R.2
Rue, L.W.3
Thompson, J.A.4
-
82
-
-
0034578997
-
Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein
-
T. Noshi, T. Yoshikawa, M. Ikeuchi et al., "Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein," Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 621-630, 2000.
-
(2000)
Journal of Biomedical Materials Research
, vol.52
, Issue.4
, pp. 621-630
-
-
Noshi, T.1
Yoshikawa, T.2
Ikeuchi, M.3
-
83
-
-
53549125837
-
Boneregenerative bioceramic implants with drug and protein controlled delivery capability
-
M. Vallet-Regí, F. Balas, M. Colilla, and M. Manzano, "Boneregenerative bioceramic implants with drug and protein controlled delivery capability," Progress in Solid State Chemistry, vol. 36, no. 3, pp. 163-191, 2008.
-
(2008)
Progress In Solid State Chemistry
, vol.36
, Issue.3
, pp. 163-191
-
-
Vallet-Regí, M.1
Balas, F.2
Colilla, M.3
Manzano, M.4
-
84
-
-
0028063592
-
Hydroxyapatite microcarriers for biocontrolled release of protein drugs
-
K. Ijntema, W. J. M. Heuvelsland, C. A. M. C. Dirix, and A. P. Sam, "Hydroxyapatite microcarriers for biocontrolled release of protein drugs," International Journal of Pharmaceutics, vol. 112, no. 3, pp. 215-224, 1994.
-
(1994)
International Journal of Pharmaceutics
, vol.112
, Issue.3
, pp. 215-224
-
-
Ijntema, K.1
Heuvelsland, W.J.M.2
Dirix, C.A.M.C.3
Sam, A.P.4
-
85
-
-
1542358682
-
Hydroxyapatite particles as a controlled release carrier of protein
-
T. Matsumoto, M. Okazaki, M. Inoue et al., "Hydroxyapatite particles as a controlled release carrier of protein," Biomaterials, vol. 25, no. 17, pp. 3807-3812, 2004.
-
(2004)
Biomaterials
, vol.25
, Issue.17
, pp. 3807-3812
-
-
Matsumoto, T.1
Okazaki, M.2
Inoue, M.3
-
86
-
-
0033984986
-
Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis
-
K. Kawai, S. Suzuki, Y. Tabata, Y. Ikada, and Y. Nishimura, "Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis," Biomaterials, vol. 21, no. 5, pp. 489-499, 2000.
-
(2000)
Biomaterials
, vol.21
, Issue.5
, pp. 489-499
-
-
Kawai, K.1
Suzuki, S.2
Tabata, Y.3
Ikada, Y.4
Nishimura, Y.5
-
87
-
-
0037409924
-
Implantable applications of chitin and chitosan
-
E. Khor and L. Y. Lim, "Implantable applications of chitin and chitosan," Biomaterials, vol. 24, no. 13, pp. 2339-2349, 2003.
-
(2003)
Biomaterials
, vol.24
, Issue.13
, pp. 2339-2349
-
-
Khor, E.1
Lim, L.Y.2
-
88
-
-
33845476866
-
Heparinimmobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor
-
J. J. Yoon, H. J. Chung, H. J. Lee, and T. G. Park, "Heparinimmobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor," Journal of Biomedical Materials Research A, vol. 79, no. 4, pp. 934-942, 2006.
-
(2006)
Journal of Biomedical Materials Research A
, vol.79
, Issue.4
, pp. 934-942
-
-
Yoon, J.J.1
Chung, H.J.2
Lee, H.J.3
Park, T.G.4
-
89
-
-
0041969009
-
Enhancing the vascularization of threedimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres
-
A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen, "Enhancing the vascularization of threedimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres," Journal of Biomedical Materials Research A, vol. 65, no. 4, pp. 489-497, 2003.
-
(2003)
Journal of Biomedical Materials Research A
, vol.65
, Issue.4
, pp. 489-497
-
-
Perets, A.1
Baruch, Y.2
Weisbuch, F.3
Shoshany, G.4
Neufeld, G.5
Cohen, S.6
-
90
-
-
0024336588
-
Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps
-
P. Aebischer, A. N. Salessiotis, and S. R. Winn, "Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps," Journal of Neuroscience Research, vol. 23, no. 3, pp. 282-289, 1989.
-
(1989)
Journal of Neuroscience Research
, vol.23
, Issue.3
, pp. 282-289
-
-
Aebischer, P.1
Salessiotis, A.N.2
Winn, S.R.3
-
91
-
-
0032477786
-
De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor
-
N. Kawaguchi, K. Toriyama, E. Nicodemou-Lena, K. Inou, S. Torii, and Y. Kitagawa, "De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 1062-1066, 1998.
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.3
, pp. 1062-1066
-
-
Kawaguchi, N.1
Toriyama, K.2
Nicodemou-Lena, E.3
Inou, K.4
Torii, S.5
Kitagawa, Y.6
-
92
-
-
0033919545
-
De novo formation of adipose tissue by controlled release of basic fibroblast growth factor
-
Y. Tabata, M. Miyao, T. Inamoto et al., "De novo formation of adipose tissue by controlled release of basic fibroblast growth factor," Tissue Engineering, vol. 6, no. 3, pp. 279-289, 2000.
-
(2000)
Tissue Engineering
, vol.6
, Issue.3
, pp. 279-289
-
-
Tabata, Y.1
Miyao, M.2
Inamoto, T.3
-
93
-
-
0037409609
-
Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor
-
Y. Kimura, M. Ozeki, T. Inamoto, and Y. Tabata, "Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor," Biomaterials, vol. 24, no. 14, pp. 2513-2521, 2003.
-
(2003)
Biomaterials
, vol.24
, Issue.14
, pp. 2513-2521
-
-
Kimura, Y.1
Ozeki, M.2
Inamoto, T.3
Tabata, Y.4
-
94
-
-
75749145023
-
In situ adipogenesis in fat tissue augmented by collagen scaffold with gelatin microspheres containing basic fibroblast growth factor
-
Y. Kimura, W. Tsuji, H. Yamashiro, M. Toi, T. Inamoto, and Y. Tabata, "In situ adipogenesis in fat tissue augmented by collagen scaffold with gelatin microspheres containing basic fibroblast growth factor," Journal of Tissue Engineering and Regenerative Medicine, vol. 4, no. 1, pp. 55-61, 2010.
-
(2010)
Journal of Tissue Engineering and Regenerative Medicine
, vol.4
, Issue.1
, pp. 55-61
-
-
Kimura, Y.1
Tsuji, W.2
Yamashiro, H.3
Toi, M.4
Inamoto, T.5
Tabata, Y.6
-
95
-
-
42049104889
-
Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping
-
Y. Kimura, A. Hokugo, T. Takamoto, Y. Tabata, and H. Kurosawa, "Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping," Tissue Engineering C, vol. 14, no. 1, pp. 47-57, 2008.
-
(2008)
Tissue Engineering C
, vol.14
, Issue.1
, pp. 47-57
-
-
Kimura, Y.1
Hokugo, A.2
Takamoto, T.3
Tabata, Y.4
Kurosawa, H.5
-
96
-
-
76749142958
-
A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells
-
S. Sahoo, S. L. Toh, and J. C. H. Goh, "A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells," Biomaterials, vol. 31, no. 11, pp. 2990-2998, 2010.
-
(2010)
Biomaterials
, vol.31
, Issue.11
, pp. 2990-2998
-
-
Sahoo, S.1
Toh, S.L.2
Goh, J.C.H.3
-
97
-
-
0030070640
-
Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold
-
T. Fujisato, T. Sajiki, L. Qiang, and Y. Ikada, "Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold," Biomaterials, vol. 17, no. 2, pp. 155-162, 1996.
-
(1996)
Biomaterials
, vol.17
, Issue.2
, pp. 155-162
-
-
Fujisato, T.1
Sajiki, T.2
Qiang, L.3
Ikada, Y.4
-
98
-
-
27744519928
-
Proliferation and differentiation of rat bonemarrow stromal cells on poly(glycolic acid)-collagen sponge
-
M. Fujita, Y. Kinoshita, E. Sato et al., "Proliferation and differentiation of rat bonemarrow stromal cells on poly(glycolic acid)-collagen sponge," Tissue Engineering, vol. 11, no. 9-10, pp. 1346-1355, 2005.
-
(2005)
Tissue Engineering
, vol.11
, Issue.9-10
, pp. 1346-1355
-
-
Fujita, M.1
Kinoshita, Y.2
Sato, E.3
-
99
-
-
23744489998
-
Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct
-
N. Isogai, T. Morotomi, S. Hayakawa et al., "Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct," Journal of BiomedicalMaterials Research A, vol. 74, no. 3, pp. 408-418, 2005.
-
(2005)
Journal of BiomedicalMaterials Research A
, vol.74
, Issue.3
, pp. 408-418
-
-
Isogai, N.1
Morotomi, T.2
Hayakawa, S.3
-
100
-
-
56449096209
-
An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis
-
M. Komura, H. Komura, Y. Kanamori et al., "An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis," Journal of Pediatric Surgery, vol. 43, no. 12, pp. 2141-2146, 2008.
-
(2008)
Journal of Pediatric Surgery
, vol.43
, Issue.12
, pp. 2141-2146
-
-
Komura, M.1
Komura, H.2
Kanamori, Y.3
-
101
-
-
4744366676
-
Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor
-
Z. Ma, C. Gao, Y. Gong, and J. Shen, "Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor," Biomaterials, vol. 26, no. 11, pp. 1253-1259, 2005.
-
(2005)
Biomaterials
, vol.26
, Issue.11
, pp. 1253-1259
-
-
Ma, Z.1
Gao, C.2
Gong, Y.3
Shen, J.4
-
102
-
-
0035423786
-
Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold
-
G. Lisignoli, N. Zini, G. Remiddi et al., "Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold," Biomaterials, vol. 22, no. 15, pp. 2095-2105, 2001.
-
(2001)
Biomaterials
, vol.22
, Issue.15
, pp. 2095-2105
-
-
Lisignoli, G.1
Zini, N.2
Remiddi, G.3
-
103
-
-
0032190728
-
In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels
-
Y. Tabata, A. Nagano, MD. Muniruzzaman, and Y. Ikada, "In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels," Biomaterials, vol. 19, no. 19, pp. 1781-1789, 1998.
-
(1998)
Biomaterials
, vol.19
, Issue.19
, pp. 1781-1789
-
-
Tabata, Y.1
Nagano, A.2
Muniruzzaman, M.D.3
Ikada, Y.4
-
104
-
-
77951254161
-
FGF2-adsorbed macroporous hydroxyapatite bone granules stimulate in vitro osteoblastic gene expression and differentiation
-
I. Jeong, H.-S. Yu, M.-K. Kim, J.-H. Jang, and H.-W. Kim, "FGF2-adsorbed macroporous hydroxyapatite bone granules stimulate in vitro osteoblastic gene expression and differentiation," Journal of Materials Science: Materials in Medicine, vol. 21, no. 4, pp. 1335-1342, 2010.
-
(2010)
Journal of Materials Science: Materials In Medicine
, vol.21
, Issue.4
, pp. 1335-1342
-
-
Jeong, I.1
Yu, H.-S.2
Kim, M.-K.3
Jang, J.-H.4
Kim, H.-W.5
-
105
-
-
77951253999
-
Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium
-
K. S. Hong, E.-C. Kim, S.-H. Bang et al., "Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium," Journal of Biomedical Materials Research A, vol. 94, no. 4, pp. 1187-1194, 2010.
-
(2010)
Journal of Biomedical Materials Research A
, vol.94
, Issue.4
, pp. 1187-1194
-
-
Hong, K.S.1
Kim, E.-C.2
Bang, S.-H.3
-
106
-
-
68949203523
-
Basic fibroblast growth factor suspended in Matrigel improves titanium implant fixation in ovariectomized rats
-
Y. Gao, S. Zhu, E. Luo, J. Li, G. Feng, and J. Hu, "Basic fibroblast growth factor suspended in Matrigel improves titanium implant fixation in ovariectomized rats," Journal of Controlled Release, vol. 139, no. 1, pp. 15-21, 2009.
-
(2009)
Journal of Controlled Release
, vol.139
, Issue.1
, pp. 15-21
-
-
Gao, Y.1
Zhu, S.2
Luo, E.3
Li, J.4
Feng, G.5
Hu, J.6
-
107
-
-
77949831877
-
Repair of large osteochondral defects in rabbits using porous hydroxyapatite/ collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2)
-
H. Maehara, S. Sotome, T. Yoshii et al., "Repair of large osteochondral defects in rabbits using porous hydroxyapatite/ collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2)," Journal of Orthopaedic Research, vol. 28, no. 5, pp. 677-686, 2010.
-
(2010)
Journal of Orthopaedic Research
, vol.28
, Issue.5
, pp. 677-686
-
-
Maehara, H.1
Sotome, S.2
Yoshii, T.3
-
108
-
-
44949102252
-
Effect of FGF-2 and melatonin on implant bone healing: A histomorphometric study
-
M. Takechi, S. Tatehara, K. Satomura, K. Fujisawa, and M. Nagayama, "Effect of FGF-2 and melatonin on implant bone healing: a histomorphometric study," Journal of Materials Science: Materials in Medicine, vol. 19, no. 8, pp. 2949-2952, 2008.
-
(2008)
Journal of Materials Science: Materials In Medicine
, vol.19
, Issue.8
, pp. 2949-2952
-
-
Takechi, M.1
Tatehara, S.2
Satomura, K.3
Fujisawa, K.4
Nagayama, M.5
-
109
-
-
0033201853
-
Regeneration of periodontal tissues by basic fibroblast growth factor
-
S. Murakami, S. Takayama, K. Ikezawa et al., "Regeneration of periodontal tissues by basic fibroblast growth factor," Journal of Periodontal Research, vol. 34, no. 7, pp. 425-430, 1999.
-
(1999)
Journal of Periodontal Research
, vol.34
, Issue.7
, pp. 425-430
-
-
Murakami, S.1
Takayama, S.2
Ikezawa, K.3
-
110
-
-
77949740938
-
Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs
-
Y. Shirakata, K. Taniyama, T. Yoshimoto et al., "Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs," Journal of Clinical Periodontology, vol. 37, no. 4, pp. 374-381, 2010.
-
(2010)
Journal of Clinical Periodontology
, vol.37
, Issue.4
, pp. 374-381
-
-
Shirakata, Y.1
Taniyama, K.2
Yoshimoto, T.3
-
111
-
-
26844526040
-
Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection
-
E. C. Tsai, P. D. Dalton, M. S. Shoichet, and C. H. Tator, "Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection," Biomaterials, vol. 27, no. 3, pp. 519-533, 2006.
-
(2006)
Biomaterials
, vol.27
, Issue.3
, pp. 519-533
-
-
Tsai, E.C.1
Dalton, P.D.2
Shoichet, M.S.3
Tator, C.H.4
-
112
-
-
0035106057
-
Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,Llactide) copolymers and a-FGF: In vitro and in vivo evaluation for spinal cord regeneration
-
V. Maquet, D. Martin, F. Scholtes et al., "Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,Llactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration," Biomaterials, vol. 22, no. 10, pp. 1137-1146, 2001.
-
(2001)
Biomaterials
, vol.22
, Issue.10
, pp. 1137-1146
-
-
Maquet, V.1
Martin, D.2
Scholtes, F.3
-
113
-
-
77953807801
-
Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system
-
C. E. Kang, C. H. Tator, and M. S. Shoichet, "Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system," Journal of Controlled Release, vol. 144, no. 1, pp. 25-31, 2010.
-
(2010)
Journal of Controlled Release
, vol.144
, Issue.1
, pp. 25-31
-
-
Kang, C.E.1
Tator, C.H.2
Shoichet, M.S.3
-
114
-
-
75449114220
-
Basic fibroblast growth factor combined with biodegradable hydrogel promotes healing of facial nerve after compression injury: An experimental study
-
H. Komobuchi, N. Hato, M. Teraoka et al., "Basic fibroblast growth factor combined with biodegradable hydrogel promotes healing of facial nerve after compression injury: an experimental study," Acta Oto-Laryngologica, vol. 130, no. 1, pp. 173-178, 2010.
-
(2010)
Acta Oto-Laryngologica
, vol.130
, Issue.1
, pp. 173-178
-
-
Komobuchi, H.1
Hato, N.2
Teraoka, M.3
-
115
-
-
77954537856
-
Injectable and fast resorbable calcium phosphate cement for bodysetting bone grafts
-
I. Rajzer, O. Castaño, E. Engel, and J. A. Planell, "Injectable and fast resorbable calcium phosphate cement for bodysetting bone grafts," Journal of Materials Science: Materials in Medicine, vol. 21, no. 7, pp. 2049-2056, 2010.
-
(2010)
Journal of Materials Science: Materials In Medicine
, vol.21
, Issue.7
, pp. 2049-2056
-
-
Rajzer, I.1
Castaño, O.2
Engel, E.3
Planell, J.A.4
-
116
-
-
33746972807
-
Calcium phosphate cements as bone drug delivery systems: A review
-
M. P. Ginebra, T. Traykova, and J. A. Planell, "Calcium phosphate cements as bone drug delivery systems: a review," Journal of Controlled Release, vol. 113, no. 2, pp. 102-110, 2006.
-
(2006)
Journal of Controlled Release
, vol.113
, Issue.2
, pp. 102-110
-
-
Ginebra, M.P.1
Traykova, T.2
Planell, J.A.3
-
117
-
-
0035385135
-
Hydrogels for tissue engineering
-
K. Y. Lee and D. J. Mooney, "Hydrogels for tissue engineering," Chemical Reviews, vol. 101, no. 7, pp. 1869-1880, 2001.
-
(2001)
Chemical Reviews
, vol.101
, Issue.7
, pp. 1869-1880
-
-
Lee, K.Y.1
Mooney, D.J.2
-
118
-
-
70149088868
-
Interactions between heparan sulfate and proteins-design and functional implications
-
U. Lindahl and J. P. Li, "Interactions between heparan sulfate and proteins-design and functional implications," International review of cell and molecular biology, vol. 276, pp. 105-159, 2009.
-
(2009)
International Review of Cell and Molecular Biology
, vol.276
, pp. 105-159
-
-
Lindahl, U.1
Li, J.P.2
-
119
-
-
33749676409
-
Heparin-II domain of fibronectin is a vascular endothelial growth factorbinding domain: Enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism
-
E. S. Wijelath, S. Rahman, M. Namekata et al., "Heparin-II domain of fibronectin is a vascular endothelial growth factorbinding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism," Circulation Research, vol. 99, no. 8, pp. 853-860, 2006.
-
(2006)
Circulation Research
, vol.99
, Issue.8
, pp. 853-860
-
-
Wijelath, E.S.1
Rahman, S.2
Namekata, M.3
-
120
-
-
33748080132
-
The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds
-
H. Lin, B. Chen, W. Sun, W. Zhao, Y. Zhao, and J. Dai, "The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds," Biomaterials, vol. 27, no. 33, pp. 5708-5714, 2006.
-
(2006)
Biomaterials
, vol.27
, Issue.33
, pp. 5708-5714
-
-
Lin, H.1
Chen, B.2
Sun, W.3
Zhao, W.4
Zhao, Y.5
Dai, J.6
-
121
-
-
0032487117
-
Basic fibroblast growth factor adsorption and release properties of calcium phosphate
-
V. Midy, C. Rey, E. Bres, and M. Dard, "Basic fibroblast growth factor adsorption and release properties of calcium phosphate," Journal of Biomedical Materials Research, vol. 41, no. 3, pp. 405-411, 1998.
-
(1998)
Journal of Biomedical Materials Research
, vol.41
, Issue.3
, pp. 405-411
-
-
Midy, V.1
Rey, C.2
Bres, E.3
Dard, M.4
-
122
-
-
0032879676
-
Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities
-
Y. Tabata and Y. Ikada, "Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities," Biomaterials, vol. 20, no. 22, pp. 2169-2175, 1999.
-
(1999)
Biomaterials
, vol.20
, Issue.22
, pp. 2169-2175
-
-
Tabata, Y.1
Ikada, Y.2
-
123
-
-
0037340354
-
Fibrinbased biomaterials to deliver human growth factors
-
C. Wong, E. Inman, R. Spaethe, and S. Helgerson, "Fibrinbased biomaterials to deliver human growth factors," Thrombosis and Haemostasis, vol. 89, no. 3, pp. 573-582, 2003.
-
(2003)
Thrombosis and Haemostasis
, vol.89
, Issue.3
, pp. 573-582
-
-
Wong, C.1
Inman, E.2
Spaethe, R.3
Helgerson, S.4
-
124
-
-
0032571259
-
Binding of basic fibroblast growth factor to fibrinogen and fibrin*
-
A. Sahni, T. Odrljin, and C. W. Francis, "Binding of basic fibroblast growth factor to fibrinogen and fibrin*," Journal of Biological Chemistry, vol. 273, no. 13, pp. 7554-7559, 1998.
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.13
, pp. 7554-7559
-
-
Sahni, A.1
Odrljin, T.2
Francis, C.W.3
-
125
-
-
20444412662
-
Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor
-
S. Cai, Y. Liu, Z. S. Xiao, and G. D. Prestwich, "Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor," Biomaterials, vol. 26, no. 30, pp. 6054-6067, 2005.
-
(2005)
Biomaterials
, vol.26
, Issue.30
, pp. 6054-6067
-
-
Cai, S.1
Liu, Y.2
Xiao, Z.S.3
Prestwich, G.D.4
-
126
-
-
0037122675
-
Hydrogels for biomedical applications
-
A. S. Hoffman, "Hydrogels for biomedical applications," Advanced Drug Delivery Reviews, vol. 54, no. 1, pp. 3-12, 2002.
-
(2002)
Advanced Drug Delivery Reviews
, vol.54
, Issue.1
, pp. 3-12
-
-
Hoffman, A.S.1
-
127
-
-
75849139978
-
Biomimetic materials in tissue engineering
-
J. Patterson, M. M. Martino, and J. A. Hubbell, "Biomimetic materials in tissue engineering," Materials Today, vol. 13, no. 1-2, pp. 14-22, 2010.
-
(2010)
Materials Today
, vol.13
, Issue.1-2
, pp. 14-22
-
-
Patterson, J.1
Martino, M.M.2
Hubbell, J.A.3
-
128
-
-
0035981078
-
Environment-sensitive hydrogels for drug delivery
-
Y. Qiu and K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 53, no. 3, pp. 321-339, 2001.
-
(2001)
Advanced Drug Delivery Reviews
, vol.53
, Issue.3
, pp. 321-339
-
-
Qiu, Y.1
Park, K.2
-
129
-
-
37649018353
-
Delivering growth factors for therapeutics
-
E. Anitua, M. Sánchez, G. Orive, and I. Andia, "Delivering growth factors for therapeutics," Trends in Pharmacological Sciences, vol. 29, no. 1, pp. 37-41, 2008.
-
(2008)
Trends In Pharmacological Sciences
, vol.29
, Issue.1
, pp. 37-41
-
-
Anitua, E.1
Sánchez, M.2
Orive, G.3
Andia, I.4
-
130
-
-
0042626603
-
Polymeric growth factor delivery strategies for tissue engineering
-
R. R. Chen and D. J. Mooney, "Polymeric growth factor delivery strategies for tissue engineering," Pharmaceutical Research, vol. 20, no. 8, pp. 1103-1112, 2003.
-
(2003)
Pharmaceutical Research
, vol.20
, Issue.8
, pp. 1103-1112
-
-
Chen, R.R.1
Mooney, D.J.2
-
131
-
-
0034122571
-
Growth factor delivery for tissue engineering
-
J. E. Babensee, L. V. McIntire, and A. G. Mikos, "Growth factor delivery for tissue engineering," Pharmaceutical Research, vol. 17, no. 5, pp. 497-504, 2000.
-
(2000)
Pharmaceutical Research
, vol.17
, Issue.5
, pp. 497-504
-
-
Babensee, J.E.1
McIntire, L.V.2
Mikos, A.G.3
-
132
-
-
67349112399
-
Nanoparticulate systems for growth factor delivery
-
S. Zhang and H. Uludǎg, "Nanoparticulate systems for growth factor delivery," Pharmaceutical Research, vol. 26, no. 7, pp. 1561-1580, 2009.
-
(2009)
Pharmaceutical Research
, vol.26
, Issue.7
, pp. 1561-1580
-
-
Zhang, S.1
Uludǎg, H.2
-
133
-
-
33846644519
-
Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor
-
J. S. Lee, D. H. Go, J. W. Bae, S. J. Lee, and K. D. Park, "Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor," Journal of Controlled Release, vol. 117, no. 2, pp. 204-209, 2007.
-
(2007)
Journal of Controlled Release
, vol.117
, Issue.2
, pp. 204-209
-
-
Lee, J.S.1
Go, D.H.2
Bae, J.W.3
Lee, S.J.4
Park, K.D.5
-
134
-
-
0037462997
-
Biodegradable nanoparticles for drug and gene delivery to cells and tissue
-
J. Panyam and V. Labhasetwar, "Biodegradable nanoparticles for drug and gene delivery to cells and tissue," Advanced Drug Delivery Reviews, vol. 55, no. 3, pp. 329-347, 2003.
-
(2003)
Advanced Drug Delivery Reviews
, vol.55
, Issue.3
, pp. 329-347
-
-
Panyam, J.1
Labhasetwar, V.2
-
135
-
-
0035342311
-
Biomaterials for gene delivery: Atelocollagen-mediated controlled release of molecular medicines
-
T. Ochiya, S. Nagahara, A. Sano, H. Itoh, and M. Terada, "Biomaterials for gene delivery: atelocollagen-mediated controlled release of molecular medicines," Current gene therapy, vol. 1, no. 1, pp. 31-52, 2001.
-
(2001)
Current Gene Therapy
, vol.1
, Issue.1
, pp. 31-52
-
-
Ochiya, T.1
Nagahara, S.2
Sano, A.3
Itoh, H.4
Terada, M.5
-
136
-
-
46749123819
-
Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers
-
I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu, and V. S.-Y. Lin, "Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers," Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1278-1288, 2008.
-
(2008)
Advanced Drug Delivery Reviews
, vol.60
, Issue.11
, pp. 1278-1288
-
-
Slowing, I.I.1
Vivero-Escoto, J.L.2
Wu, C.-W.3
Lin, V.S.-Y.4
-
137
-
-
34249780352
-
Mesoporous silica nanoparticles for drug delivery and biosensing applications
-
I. I. Slowing, B. G. Trewyn, S. Giri, and V. S.-Y. Lin, "Mesoporous silica nanoparticles for drug delivery and biosensing applications," Advanced Functional Materials, vol. 17, no. 8, pp. 1225-1236, 2007.
-
(2007)
Advanced Functional Materials
, vol.17
, Issue.8
, pp. 1225-1236
-
-
Slowing, I.I.1
Trewyn, B.G.2
Giri, S.3
Lin, V.S.-Y.4
-
138
-
-
0037413362
-
Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery
-
I. Roy, S. Mitra, A. Maitra, and S. Mozumdar, "Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery," International Journal of Pharmaceutics, vol. 250, no. 1, pp. 25-33, 2003.
-
(2003)
International Journal of Pharmaceutics
, vol.250
, Issue.1
, pp. 25-33
-
-
Roy, I.1
Mitra, S.2
Maitra, A.3
Mozumdar, S.4
-
139
-
-
56449096209
-
An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis
-
M. Komura, H. Komura, Y. Kanamori et al., "An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis," Journal of Pediatric Surgery, vol. 43, no. 12, pp. 2141-2146, 2008.
-
(2008)
Journal of Pediatric Surgery
, vol.43
, Issue.12
, pp. 2141-2146
-
-
Komura, M.1
Komura, H.2
Kanamori, Y.3
-
140
-
-
33746835278
-
In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor
-
Y. Hiraoka, H. Yamashiro, K. Yasuda, Y. Kimura, T. Inamoto, and Y. Tabata, "In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor," Tissue Engineering, vol. 12, no. 6, pp. 1475-1487, 2006.
-
(2006)
Tissue Engineering
, vol.12
, Issue.6
, pp. 1475-1487
-
-
Hiraoka, Y.1
Yamashiro, H.2
Yasuda, K.3
Kimura, Y.4
Inamoto, T.5
Tabata, Y.6
-
141
-
-
0024858260
-
The diabetic rat as an impaired wound healing model: Stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor
-
K. N. Broadley, A. M. Aquino, B. Hicks et al., "The diabetic rat as an impaired wound healing model: stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor," Biotechnology therapeutics, vol. 1, no. 1, pp. 55-68, 1989.
-
(1989)
Biotechnology Therapeutics
, vol.1
, Issue.1
, pp. 55-68
-
-
Broadley, K.N.1
Aquino, A.M.2
Hicks, B.3
-
142
-
-
0036319212
-
The effect of basic fibroblast growth factor on scarring
-
G. E. Spyrou and I. L. Naylor, "The effect of basic fibroblast growth factor on scarring," British Journal of Plastic Surgery, vol. 55, no. 4, pp. 275-282, 2002.
-
(2002)
British Journal of Plastic Surgery
, vol.55
, Issue.4
, pp. 275-282
-
-
Spyrou, G.E.1
Naylor, I.L.2
-
143
-
-
0030864663
-
Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing
-
S. Tagashira, H. Harada, T. Katsumata, N. Itoh, and M. Nakatsuka, "Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing," Gene, vol. 197, no. 1-2, pp. 399-404, 1997.
-
(1997)
Gene
, vol.197
, Issue.1-2
, pp. 399-404
-
-
Tagashira, S.1
Harada, H.2
Katsumata, T.3
Itoh, N.4
Nakatsuka, M.5
-
144
-
-
0026569742
-
The role of basic fibroblast growth factor in skeletal muscle regeneration
-
M. Guthridge, M. Wilson, J. Cowling, J. Bertolini, and M. T. W. Hearn, "The role of basic fibroblast growth factor in skeletal muscle regeneration," Growth Factors, vol. 6, no. 1, pp. 53-63, 1992.
-
(1992)
Growth Factors
, vol.6
, Issue.1
, pp. 53-63
-
-
Guthridge, M.1
Wilson, M.2
Cowling, J.3
Bertolini, J.4
Hearn, M.T.W.5
-
145
-
-
0029566260
-
Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy
-
J. P. Lefaucheur and A. Sebille, "Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy," Neuroscience Letters, vol. 202, no. 1-2, pp. 121-124, 1995.
-
(1995)
Neuroscience Letters
, vol.202
, Issue.1-2
, pp. 121-124
-
-
Lefaucheur, J.P.1
Sebille, A.2
-
146
-
-
0032943051
-
Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats
-
Z. Yablonka-Reuveni, R. Seger, and A. J. Rivera, "Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats," Journal of Histochemistry and Cytochemistry, vol. 47, no. 1, pp. 23-42, 1999.
-
(1999)
Journal of Histochemistry and Cytochemistry
, vol.47
, Issue.1
, pp. 23-42
-
-
Yablonka-Reuveni, Z.1
Seger, R.2
Rivera, A.J.3
-
147
-
-
0036104276
-
Delivery of FGF genes to wound repair cells enhances arteriogenesis andmyogenesis in skeletal muscle
-
J. Doukas, K. Blease, D. Craig et al., "Delivery of FGF genes to wound repair cells enhances arteriogenesis andmyogenesis in skeletal muscle," Molecular Therapy, vol. 5, no. 5, pp. 517-527, 2002.
-
(2002)
Molecular Therapy
, vol.5
, Issue.5
, pp. 517-527
-
-
Doukas, J.1
Blease, K.2
Craig, D.3
-
148
-
-
0029900306
-
The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration
-
C. A. Mitchell, J. K. McGeachie, and M. D. Grounds, "The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration," Growth Factors, vol. 13, no. 1-2, pp. 37-55, 1996.
-
(1996)
Growth Factors
, vol.13
, Issue.1-2
, pp. 37-55
-
-
Mitchell, C.A.1
McGeachie, J.K.2
Grounds, M.D.3
-
149
-
-
0030272318
-
Angiogenic and inflammatory responses following skeletal muscle injury are altered by immune neutralization of endogenous basic fibroblast growth factor, insulin-like growth factor-1 and transforming growth factor-β1
-
J.-P. Lefaucheur, B. Gjata, H. Lafont, and A. Sebille, "Angiogenic and inflammatory responses following skeletal muscle injury are altered by immune neutralization of endogenous basic fibroblast growth factor, insulin-like growth factor-1 and transforming growth factor-β1," Journal of Neuroimmunology, vol. 70, no. 1, pp. 37-44, 1996.
-
(1996)
Journal of Neuroimmunology
, vol.70
, Issue.1
, pp. 37-44
-
-
Lefaucheur, J.-P.1
Gjata, B.2
Lafont, H.3
Sebille, A.4
-
150
-
-
0032462929
-
Molecular studies in flexor tendon wound healing: The role of basic fibroblast growth factor gene expression
-
J. Chang, D. Most, R. Thunder, B. Mehrara, M. T. Longaker, and W. C. Lineaweaver, "Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression," Journal of Hand Surgery, vol. 23, no. 6, pp. 1052-1058, 1998.
-
(1998)
Journal of Hand Surgery
, vol.23
, Issue.6
, pp. 1052-1058
-
-
Chang, J.1
Most, D.2
Thunder, R.3
Mehrara, B.4
Longaker, M.T.5
Lineaweaver, W.C.6
-
151
-
-
16644365596
-
Temporal expression of fibroblast growth factor receptors during primary ligament repair
-
S. M. Cool, C. P. Snyman, V. Nurcombe, and M. Forwood, "Temporal expression of fibroblast growth factor receptors during primary ligament repair," Knee Surgery, Sports Traumatology, Arthroscopy, vol. 12, no. 5, pp. 490-496, 2004.
-
(2004)
Knee Surgery, Sports Traumatology, Arthroscopy
, vol.12
, Issue.5
, pp. 490-496
-
-
Cool, S.M.1
Snyman, C.P.2
Nurcombe, V.3
Forwood, M.4
-
152
-
-
0033572770
-
Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three- dimensional cartilaginous tissue
-
I. Martin, G. Vunjak-Novakovic, J. Yang, R. Langer, and L. E. Freed, "Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three- dimensional cartilaginous tissue," Experimental Cell Research, vol. 253, no. 2, pp. 681-688, 1999.
-
(1999)
Experimental Cell Research
, vol.253
, Issue.2
, pp. 681-688
-
-
Martin, I.1
Vunjak-Novakovic, G.2
Yang, J.3
Langer, R.4
Freed, L.E.5
-
153
-
-
16344377055
-
FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrowderived mesenchymal stem cells
-
L. A. Solchaga, K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan, and J. F. Welter, "FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrowderived mesenchymal stem cells," Journal of Cellular Physiology, vol. 203, no. 2, pp. 398-409, 2005.
-
(2005)
Journal of Cellular Physiology
, vol.203
, Issue.2
, pp. 398-409
-
-
Solchaga, L.A.1
Penick, K.2
Porter, J.D.3
Goldberg, V.M.4
Caplan, A.I.5
Welter, J.F.6
-
154
-
-
33645130153
-
Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adiposederived mesenchymal cells
-
M. Chiou, Y. Xu, and M. T. Longaker, "Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adiposederived mesenchymal cells," Biochemical and Biophysical Research Communications, vol. 343, no. 2, pp. 644-652, 2006.
-
(2006)
Biochemical and Biophysical Research Communications
, vol.343
, Issue.2
, pp. 644-652
-
-
Chiou, M.1
Xu, Y.2
Longaker, M.T.3
-
155
-
-
36248934276
-
Effect of different growth factors on human osteoblasts activities: A possible application in bone regeneration for tissue engineering
-
M. Bosetti, F. Boccafoschi, M. Leigheb, and M. F. Cannas, "Effect of different growth factors on human osteoblasts activities: a possible application in bone regeneration for tissue engineering," Biomolecular Engineering, vol. 24, no. 6, pp. 613-618, 2007.
-
(2007)
Biomolecular Engineering
, vol.24
, Issue.6
, pp. 613-618
-
-
Bosetti, M.1
Boccafoschi, F.2
Leigheb, M.3
Cannas, M.F.4
-
156
-
-
67650527252
-
Research on promoting periodontal regeneration with human basic fibroblast growth factor-modified bone marrow mesenchymal stromal cell gene therapy
-
Z. Tan, Q. Zhao, P. Gong et al., "Research on promoting periodontal regeneration with human basic fibroblast growth factor-modified bone marrow mesenchymal stromal cell gene therapy," Cytotherapy, vol. 11, no. 3, pp. 317-325, 2009.
-
(2009)
Cytotherapy
, vol.11
, Issue.3
, pp. 317-325
-
-
Tan, Z.1
Zhao, Q.2
Gong, P.3
-
157
-
-
0035544171
-
Periodontal regeneration by FGF-2 (bFGF) in primate models
-
S. Takayama, S. Murakami, Y. Shimabukuro, M. Kitamura, and H. Okada, "Periodontal regeneration by FGF-2 (bFGF) in primate models," Journal of Dental Research, vol. 80, no. 12, pp. 2075-2079, 2001.
-
(2001)
Journal of Dental Research
, vol.80
, Issue.12
, pp. 2075-2079
-
-
Takayama, S.1
Murakami, S.2
Shimabukuro, Y.3
Kitamura, M.4
Okada, H.5
-
158
-
-
29244463365
-
Astrocyteendothelial Interactions At the Blood-brain Barrier
-
N. J. Abbott, L. R̈onnb̈ack, and E. Hansson, "Astrocyteendothelial interactions at the blood-brain barrier," Nature Reviews Neuroscience, vol. 7, no. 1, pp. 41-53, 2006.
-
(2006)
Nature Reviews Neuroscience
, vol.7
, Issue.1
, pp. 41-53
-
-
Abbott, N.J.1
R̈onnb̈ack, L.2
Hansson, E.3
-
159
-
-
33644809242
-
Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation
-
D. S. W. Benoit and K. S. Anseth, "Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation," Acta Biomaterialia, vol. 1, no. 4, pp. 461-470, 2005.
-
(2005)
Acta Biomaterialia
, vol.1
, Issue.4
, pp. 461-470
-
-
Benoit, D.S.W.1
Anseth, K.S.2
-
160
-
-
0028933272
-
Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo
-
F. Gomez-Pinilla, L. Vu, and C. W. Cotman, "Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo," Journal of Neuroscience, vol. 15, no. 3, pp. 2021-2029, 1995.
-
(1995)
Journal of Neuroscience
, vol.15
, Issue.3
, pp. 2021-2029
-
-
Gomez-Pinilla, F.1
Vu, L.2
Cotman, C.W.3
-
161
-
-
0030571568
-
Heparan sulfate potentiates the autocrine action of basic fibroblast growth factor in astrocytes: An in vivo and in vitro study
-
F. Ǵ omez-Pinilla, S. Miller, J. Choi, and C. W. Cotman, "Heparan sulfate potentiates the autocrine action of basic fibroblast growth factor in astrocytes: an in vivo and in vitro study," Neuroscience, vol. 76, no. 1, pp. 137-145, 1996.
-
(1996)
Neuroscience
, vol.76
, Issue.1
, pp. 137-145
-
-
Omez-Pinilla, F.Ǵ.1
Miller, S.2
Choi, J.3
Cotman, C.W.4
-
162
-
-
52649083768
-
Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach
-
M.-C. Tsai, L.-F. Shen, H.-S. Kuo, H. Cheng, and K.-F. Chak, "Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach," Molecular and Cellular Proteomics, vol. 7, no. 9, pp. 1668-1687, 2008.
-
(2008)
Molecular and Cellular Proteomics
, vol.7
, Issue.9
, pp. 1668-1687
-
-
Tsai, M.-C.1
Shen, L.-F.2
Kuo, H.-S.3
Cheng, H.4
Chak, K.-F.5
|