메뉴 건너뛰기




Volumn , Issue , 2010, Pages 225-234

Sparse representation of data

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY REDUCTION; FACTOR ANALYSIS METHOD; FUNDAMENTAL PRINCIPLES; INFORMATION PROCESSING MODELS; LATENT SEMANTIC INDEXING; MULTIMEDIA TECHNOLOGIES; RELEVANCE VECTOR MACHINE; SPARSE REPRESENTATION;

EID: 84887011236     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (59)
  • 1
    • 61849124176 scopus 로고    scopus 로고
    • Patch clustering for massive data sets
    • N. Alex, A. Hasenfuss, and B. Hammer. Patch clustering for massive data sets. Neurocomputing, 72(7-9):1455-1469, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1455-1469
    • Alex, N.1    Hasenfuss, A.2    Hammer, B.3
  • 3
    • 52149083934 scopus 로고    scopus 로고
    • Kernel component analysis using an epsilon-insensitive robust loss function
    • C. Alzate and J. Suykens. Kernel component analysis using an epsilon-insensitive robust loss function. IEEE Transactions on Neural Networks, 19(9):1583-1598, 2008.
    • (2008) IEEE Transactions On Neural Networks , vol.19 , Issue.9 , pp. 1583-1598
    • Alzate, C.1    Suykens, J.2
  • 5
    • 84887008598 scopus 로고    scopus 로고
    • Local matrix adaptation in clustering and applications for manifold visualization
    • to appear
    • B. Arnonkijpanich, A. Hasenfuss, and B. Hammer. Local matrix adaptation in clustering and applications for manifold visualization. Neural Networks, to appear.
    • Neural Networks
    • Arnonkijpanich, B.1    Hasenfuss, A.2    Hammer, B.3
  • 6
    • 41549108812 scopus 로고    scopus 로고
    • Algorithms for sparse linear classifiers in the massive data setting
    • D. Balakrishnan, S. andf Madigan. Algorithms for sparse linear classifiers in the massive data setting. Journal of Machine Learning Research, 9:313-337, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 313-337
    • Balakrishnan, D.1    Madigan, S.2
  • 12
    • 67649842407 scopus 로고    scopus 로고
    • Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization
    • Duarte-Carvajalino and G. J.M. Sapiro. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 18(7):1395-1408, 2009.
    • (2009) IEEE Transactions On Image Processing , vol.18 , Issue.7 , pp. 1395-1408
    • Duarte-Carvajalino1    Sapiro, G.J.M.2
  • 13
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:2899-2934, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 14
    • 70349620393 scopus 로고    scopus 로고
    • A plurality of sparse representations is better than the sparsest one alone
    • M. Elad and I. Yavneh. A plurality of sparse representations is better than the sparsest one alone. IEEE Transactions on Information Theory, 55(10):4701-4714, 2009.
    • (2009) IEEE Transactions On Information Theory , vol.55 , Issue.10 , pp. 4701-4714
    • Elad, M.1    Yavneh, I.2
  • 16
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 17
    • 73949091826 scopus 로고    scopus 로고
    • Relevance units latent variable model and nonlinear dimensionality reduction
    • J. Gao, J. Zhang, and D. Tien. Relevance units latent variable model and nonlinear dimensionality reduction. IEEE Transactions on Neural Networks, 21(1):123-135, 2010.
    • (2010) IEEE Transactions On Neural Networks , vol.21 , Issue.1 , pp. 123-135
    • Gao, J.1    Zhang, J.2    Tien, D.3
  • 18
    • 73949113489 scopus 로고    scopus 로고
    • Sparse kernel learning with lasso and bayesian inference algorithm
    • P. J. Gao and Kwan and D. Shi. Sparse kernel learning with lasso and bayesian inference algorithm. Neural Networks, 23(2):257-264, 2010.
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 257-264
    • Gao, P.J.1    Kwan2    Shi, D.3
  • 20
    • 77952352896 scopus 로고    scopus 로고
    • Clustering very large dissimilarity data sets
    • In N. El Gayar and F. Schwenker, editors, ANNPR'2010, Springer
    • B. Hammer and A. Hasenfuss. Clustering very large dissimilarity data sets. In N. El Gayar and F. Schwenker, editors, ANNPR'2010, volume 5998 of Lecture Notes in Artificial Intelligence, pages 259-273. Springer, 2010.
    • (2010) Lecture Notes In Artificial Intelligence , vol.5998 , pp. 259-273
    • Hammer, B.1    Hasenfuss, A.2
  • 21
    • 67650283861 scopus 로고    scopus 로고
    • Median topographic maps for biological data sets
    • M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Springer
    • B. Hammer, A. Hasenfuss, and F. Rossi. Median topographic maps for biological data sets. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Similarity Based Clustering, Lecture Notes Artificial Intelligence Vol. 5400, pages 92-117. Springer, 2009.
    • (2009) Similarity Based Clustering, Lecture Notes Artificial Intelligence , vol.5400 , pp. 92-117
    • Hammer, B.1    Hasenfuss, A.2    Rossi, F.3
  • 22
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 25
    • 44649189203 scopus 로고    scopus 로고
    • An adaptive stereo basis method for convolutive blind audio source separation
    • M. Jafari, E. Vincent, S. Abdallah, M. Plumbley, and M. Davies. An adaptive stereo basis method for convolutive blind audio source separation. Neurocomputing, 71(10-12):2087-2097, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2087-2097
    • Jafari, M.1    Vincent, E.2    Abdallah, S.3    Plumbley, M.4    Davies, M.5
  • 26
    • 56449127256 scopus 로고    scopus 로고
    • Incremental grlvq: Learning relevant features for 3d object recognition
    • T. Kierzmann, S. Lange, and M. Riedmiller. Incremental grlvq: Learning relevant features for 3d object recognition. Neurocomputing, 71(13-15):2868-2879, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2868-2879
    • Kierzmann, T.1    Lange, S.2    Riedmiller, M.3
  • 27
    • 56449124824 scopus 로고    scopus 로고
    • Simple method for high-performance digit recognition based on sparse coding
    • K. Labusch, E. Barth, and T. Martinetz. Simple method for high-performance digit recognition based on sparse coding. IEEE Transactions on Neural Networks, 19(11):1985-1989, 2008.
    • (2008) IEEE Transactions On Neural Networks , vol.19 , Issue.11 , pp. 1985-1989
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 28
    • 61849103486 scopus 로고    scopus 로고
    • Sparse coding neural gas: Learning of overcomplete data representations
    • K. Labusch, E. Barth, and T. Martinetz. Sparse coding neural gas: Learning of overcomplete data representations. Neurocomputing, 72(7-9):1547-1555, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1547-1555
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 33
    • 57749190853 scopus 로고    scopus 로고
    • Equivalence probability and sparsity of two sparse solutions in sparse representation
    • Y. Li, A. Cichocki, S.-I. Amari, S. Xie, and C. Guan. Equivalence probability and sparsity of two sparse solutions in sparse representation. IEEE Transactions on Neural Networks, 19(12):2009-2021, 2008.
    • (2008) IEEE Transactions On Neural Networks , vol.19 , Issue.12 , pp. 2009-2021
    • Li, Y.1    Cichocki, A.2    Amari, S.-I.3    Xie, S.4    Guan, C.5
  • 34
    • 46749096794 scopus 로고    scopus 로고
    • Maximal causes for non-linear component extraction
    • J. Lücke and M. Sahani. Maximal causes for non-linear component extraction. Journal of Machine Learning Research, 9:1227-1267, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1227-1267
    • Lücke, J.1    Sahani, M.2
  • 35
    • 44649198657 scopus 로고    scopus 로고
    • Overcomplete topographic independent component analysis
    • L. Ma and L. Zhang. Overcomplete topographic independent component analysis. Neurocomputing, 71(10-12):2217-2223, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2217-2223
    • Ma, L.1    Zhang, L.2
  • 36
    • 44649202761 scopus 로고    scopus 로고
    • Spatial relationship representation for visual object searching
    • J. Miao, L. Duan, L. Qing, W. Gao, X. Chen, and Y. Yuan. Spatial relationship representation for visual object searching. Neurocomputing, 71(10-12):1813-1823, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1813-1823
    • Miao, J.1    Duan, L.2    Qing, L.3    Gao, W.4    Chen, X.5    Yuan, Y.6
  • 37
    • 44649197165 scopus 로고    scopus 로고
    • Estimating the mixing matrix in sparse component analysis (sca) based on partial k-dimensional subspace clustering
    • F. Movahedi Naini, G. Hosein Mohimani, M. Babaie-Zadeh, and C. Jutten. Estimating the mixing matrix in sparse component analysis (sca) based on partial k-dimensional subspace clustering. Neurocomputing, 71(10-12):2330-2343, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2330-2343
    • Naini, F.M.1    Mohimani, G.H.2    Babaie-Zadeh, M.3    Jutten, C.4
  • 39
    • 55949112804 scopus 로고    scopus 로고
    • Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint
    • P. O'Grady and B. Pearlmutter. Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint. Neurocomputing, 72(1-3):88-101, 2008.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 88-101
    • O'Grady, P.1    Pearlmutter, B.2
  • 40
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 41
    • 67349251500 scopus 로고    scopus 로고
    • Self-organization in a parametrically coupled logistic map network: A model for information processing in the visual cortex
    • R. Pashaie and N. Farhat. Self-organization in a parametrically coupled logistic map network: A model for information processing in the visual cortex. IEEE Transactions on Neural Networks, 20(4):597-608, 2009.
    • (2009) IEEE Transactions On Neural Networks , vol.20 , Issue.4 , pp. 597-608
    • Pashaie, R.1    Farhat, N.2
  • 43
    • 44649149032 scopus 로고    scopus 로고
    • Hybridizing sparse component analysis with genetic algorithms for microarray analysis
    • K. Stadlthanner, F. Theis, E. Lang, A. Tome, C. Puntonet, and J. Gorriz. Hybridizing sparse component analysis with genetic algorithms for microarray analysis. Neurocomputing, 71(10-12):2356-2376, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2356-2376
    • Stadlthanner, K.1    Theis, F.2    Lang, E.3    Tome, A.4    Puntonet, C.5    Gorriz, J.6
  • 44
    • 56449120265 scopus 로고    scopus 로고
    • Sequential input selection algorithm for long-term prediction of time series
    • J. Tikka and J. Hollmen. Sequential input selection algorithm for long-term prediction of time series. Neurocomputing, 71(13-15):2604-2615, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2604-2615
    • Tikka, J.1    Hollmen, J.2
  • 45
    • 61349087401 scopus 로고    scopus 로고
    • Further results on stable recovery of sparse overcomplete representations in the presence of noise
    • P. Tseng. Further results on stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 55(2):888-899, 2009.
    • (2009) IEEE Transactions On Information Theory , vol.55 , Issue.2 , pp. 888-899
    • Tseng, P.1
  • 47
    • 63449135803 scopus 로고    scopus 로고
    • Variational bayesian sparse kernel-based blind image deconvolution with student's-t priors
    • D. Tzikas, A. Likas, and N. Galatsanos. Variational bayesian sparse kernel-based blind image deconvolution with student's-t priors. IEEE Transactions on Image Processing, 18(4):753-764, 2009.
    • (2009) IEEE Transactions On Image Processing , vol.18 , Issue.4 , pp. 753-764
    • Tzikas, D.1    Likas, A.2    Galatsanos, N.3
  • 49
    • 70350238106 scopus 로고    scopus 로고
    • Selecting features for bci control based on a covert spatial attention paradigm
    • M. van Gerven, A. Bahramisharif, T. Heskes, and O. Jensen. Selecting features for bci control based on a covert spatial attention paradigm. Neural Networks, 22(9):1271-1277, 2009.
    • (2009) Neural Networks , vol.22 , Issue.9 , pp. 1271-1277
    • van Gerven, M.1    Bahramisharif, A.2    Heskes, T.3    Jensen, O.4
  • 50
    • 67649863565 scopus 로고    scopus 로고
    • Fast and adaptive method for sar superresolution imaging based on point scattering model and optimal basis selection
    • Z.-M. Wang and W.-W. Wang. Fast and adaptive method for sar superresolution imaging based on point scattering model and optimal basis selection. IEEE Transactions on Image Processing, 18(7):1477-1486, 2009.
    • (2009) IEEE Transactions On Image Processing , vol.18 , Issue.7 , pp. 1477-1486
    • Wang, Z.-M.1    Wang, W.-W.2
  • 51
    • 44649097554 scopus 로고    scopus 로고
    • Sparse blind identification and separation by using adaptive k-orthodrome clustering
    • Y. Washizawa and A. Cichocki. Sparse blind identification and separation by using adaptive k-orthodrome clustering. Neurocomputing, 71(10-12):2321-2329, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2321-2329
    • Washizawa, Y.1    Cichocki, A.2
  • 52
    • 58149473283 scopus 로고    scopus 로고
    • Relative transformation-based neighborhood optimization for isometric embedding
    • G. Wen. Relative transformation-based neighborhood optimization for isometric embedding. Neurocomputing, 72(4-6):1205-1213, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1205-1213
    • Wen, G.1
  • 54
    • 72149094052 scopus 로고    scopus 로고
    • Feature selection for mlp neural network: The use of random permutation of probabilistic outputs
    • J.-B. Yang, K.-Q. Shen, C.-J. Ong, and X.-P. Li. Feature selection for mlp neural network: The use of random permutation of probabilistic outputs. IEEE Transactions on Neural Networks, 20(12):1911-1922, 2009.
    • (2009) IEEE Transactions On Neural Networks , vol.20 , Issue.12 , pp. 1911-1922
    • Yang, J.-B.1    Shen, K.-Q.2    Ong, C.-J.3    Li, X.-P.4
  • 55
    • 75749088304 scopus 로고    scopus 로고
    • An associative sparse coding neural network and applications
    • X. Zeng, S. Luo, and Q. Li. An associative sparse coding neural network and applications. Neurocomputing, 73(4-6):684-689, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 684-689
    • Zeng, X.1    Luo, S.2    Li, Q.3
  • 56
    • 84887012528 scopus 로고    scopus 로고
    • On the sparseness of 1-norm support vector machines
    • L. Zhang and W. Zhou. On the sparseness of 1-norm support vector machines. Neural Networks.
    • Neural Networks
    • Zhang, L.1    Zhou, W.2
  • 57
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • T. Zhang. On the consistency of feature selection using greedy least squares regression. Journal of Machine Learning Research, 10:555-568, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 555-568
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.