메뉴 건너뛰기




Volumn 20, Issue 12, 2009, Pages 1911-1922

Feature selection for MLP neural network: The use of random permutation of probabilistic outputs

Author keywords

Feature ranking; Feature selection; Multilayer perceptrons (MLPs); Probabilistic outputs; Random permutation

Indexed keywords

FEATURE RANKING; FEATURE SELECTION; MULTI-LAYER PERCEPTRONS; PROBABILISTIC OUTPUT; RANDOM PERMUTATIONS;

EID: 72149094052     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2009.2032543     Document Type: Article
Times cited : (81)

References (27)
  • 1
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley, "Selection of relevant features and examples in machine learning," Artif. Intell., vol.97, no.1-2, pp. 245-271, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 3
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol.3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 4
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • R. Kohavi and G. H. John, "Wrappers for feature selection," Artif. Intell., vol.97, no.1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 5
    • 85099325734 scopus 로고
    • Irrelevant features and subset selection problem
    • San Mateo, CA
    • G. H. John, R. Kohavi, and K. Pfleger, "Irrelevant features and subset selection problem," in Proc. Int. Conf. Mach. Learn., San Mateo, CA, 1994, pp. 121-129.
    • (1994) Proc. Int. Conf. Mach. Learn. , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 6
    • 36849082989 scopus 로고    scopus 로고
    • Feature selection via sensitivity analysis of SVM probabilistic outputs
    • K.-Q. Shen, C.-J. Ong, X.-P. Li, and E. P. Wilder-Smith, "Feature selection via sensitivity analysis of SVM probabilistic outputs," Mach. Learn., vol.70, no.1, pp. 1-20, 2008.
    • (2008) Mach. Learn. , vol.70 , Issue.1 , pp. 1-20
    • Shen, K.-Q.1    Ong, C.-J.2    Li, X.-P.3    Wilder-Smith, E.P.4
  • 7
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedfoward classification network outputs with relationships to statistical pattern recognition
    • New York: Springer-Verlag
    • J. S. Bridle, "Probabilistic interpretation of feedfoward classification network outputs with relationships to statistical pattern recognition," in Neurocomputing: Algorithms, Architectures and Applications. New York: Springer-Verlag, 1989, pp. 227-236.
    • (1989) Neurocomputing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 9
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol.4, no.2, pp. 251-257, 1991.
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 10
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency ,max-relevance, and min-redundancy
    • Aug.
    • F. H. Long, H. C. Peng, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency ,max-relevance, and min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Long, F.H.1    Peng, H.C.2    Ding, C.3
  • 11
    • 0028468293 scopus 로고
    • Using mutual information for selection features in supervised neural net learning
    • Jul.
    • R. Battiti, "Using mutual information for selection features in supervised neural net learning," IEEE Trans. Neural Netw., vol.5, no.4, pp. 537-550, Jul. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 12
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Jan.
    • N. Kwak and C. H. Choi, "Input feature selection for classification problems," IEEE Trans. Neural Netw., vol.13, no.1, pp. 143-159, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 13
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • Jan.
    • T. W. Chow and D. Huang, "Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information," IEEE Trans. Neural Netw., vol.16, no.1, pp. 1045-9227, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.1 , pp. 1045-9227
    • Chow, T.W.1    Huang, D.2
  • 15
    • 0031140388 scopus 로고    scopus 로고
    • Neural-network feature selector
    • Jan.
    • R. Setiono and H. Liu, "Neural-network feature selector," IEEE Trans. Neural Netw., vol.8, no.1, pp. 29-44, Jan. 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.1 , pp. 29-44
    • Setiono, R.1    Liu, H.2
  • 16
    • 0036532365 scopus 로고    scopus 로고
    • The annigma-wrapper approach to fast feature selection for neural nets
    • Apr.
    • C.-N. Hsu, H.-J. Huang, and S. Dietrich, "The annigma-wrapper approach to fast feature selection for neural nets," IEEE Trans. Syst. Man Cybern. B, Cybern., vol.32, no.2, pp. 207-212, Apr. 2002.
    • (2002) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.32 , Issue.2 , pp. 207-212
    • Hsu, C.-N.1    Huang, H.-J.2    Dietrich, S.3
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Oct.
    • L. Breiman, "Random forests," Mach. Learn., vol.45, no.1, pp. 5-32, Oct. 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 18
    • 36849001186 scopus 로고
    • A note on generating random permutations
    • E. S. Page, "A note on generating random permutations," Appl. Statist., vol.16, no.3, pp. 273-274, 1967.
    • (1967) Appl. Statist. , vol.16 , Issue.3 , pp. 273-274
    • Page, E.S.1
  • 19
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. Fodslette, "A scaled conjugate gradient algorithm for fast supervised learning," Neural Netw., vol.6, no.4, pp. 525-533, 1993.
    • (1993) Neural Netw , vol.6 , Issue.4 , pp. 525-533
    • Fodslette, M.1
  • 20
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol.46, no.1-3, pp. 389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 21
    • 36948999941 scopus 로고    scopus 로고
    • Univ. California, Irvine CA, [Online]. Available
    • A. Asuncion and D. J. Newman, UCI Machine Learning Repository, Univ. California, Irvine, CA, 2007 [Online]. Available: http://www.ics. uci.edu/~mlearn/MLRepository.html
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 22
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • A. Rakotomamonjy, "Variable selection using SVM-based criteria," J. Mach. Learn. Res., vol.3, pp. 1357-11320, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1357-11320
    • Rakotomamonjy, A.1
  • 25
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol.5, pp. 1205-1224, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 27
    • 33750584105 scopus 로고    scopus 로고
    • [Online]. Available
    • G. Rätsch, Benchmark Repository, 2005 [Online]. Available: http://ida. first.fhg.de/projects/bench/benchmarks.htm
    • (2005) Benchmark Repository
    • Rätsch, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.