-
1
-
-
0018230313
-
Regulation of water intake
-
Andersson B. Regulation of water intake. Physiol. Rev. 1978, 58:582.
-
(1978)
Physiol. Rev.
, vol.58
, pp. 582
-
-
Andersson, B.1
-
2
-
-
0017445303
-
Regulation of body fluids
-
Andersson B. Regulation of body fluids. Annu. Rev. Physiol. 1977, 39:185-200.
-
(1977)
Annu. Rev. Physiol.
, vol.39
, pp. 185-200
-
-
Andersson, B.1
-
3
-
-
0027282240
-
Management of hyponatraemia
-
Arieff A.I. Management of hyponatraemia. BMJ 1993, 307:305-308.
-
(1993)
BMJ
, vol.307
, pp. 305-308
-
-
Arieff, A.I.1
-
4
-
-
0029914808
-
Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits
-
Ayus J.C., et al. Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits. J. Physiol. 1996, 492:243-255.
-
(1996)
J. Physiol.
, vol.492
, pp. 243-255
-
-
Ayus, J.C.1
-
6
-
-
0347989460
-
Neuroendocrine control of body fluid metabolism
-
Antunes-Rodrigues J., et al. Neuroendocrine control of body fluid metabolism. Physiol. Rev. 2004, 84:169-208.
-
(2004)
Physiol. Rev.
, vol.84
, pp. 169-208
-
-
Antunes-Rodrigues, J.1
-
7
-
-
0023780847
-
Control of release of vasopressin by neuroendocrine reflexes
-
Bisset G.W., Chowdrey H.S. Control of release of vasopressin by neuroendocrine reflexes. Q. J. Exp. Physiol. 1988, 73:811-872.
-
(1988)
Q. J. Exp. Physiol.
, vol.73
, pp. 811-872
-
-
Bisset, G.W.1
Chowdrey, H.S.2
-
8
-
-
0017177967
-
The osmoregulation of vasopressin
-
Robertson G.L., et al. The osmoregulation of vasopressin. Kidney Int. 1976, 10:25-37.
-
(1976)
Kidney Int.
, vol.10
, pp. 25-37
-
-
Robertson, G.L.1
-
9
-
-
26944478620
-
The antidiuretic hormone and the factors which determine its release
-
Verney E.B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. B: Biol. Sci. 1947, 135:25-106.
-
(1947)
Proc. R. Soc. Lond. B: Biol. Sci.
, vol.135
, pp. 25-106
-
-
Verney, E.B.1
-
10
-
-
0015180998
-
Differences in the antidiuretic response to intracarotid infusions of various hypertonic solutions in the conscious goat
-
Eriksson L., et al. Differences in the antidiuretic response to intracarotid infusions of various hypertonic solutions in the conscious goat. Acta Physiol. Scand. 1971, 83:554-562.
-
(1971)
Acta Physiol. Scand.
, vol.83
, pp. 554-562
-
-
Eriksson, L.1
-
11
-
-
0020325861
-
Osmoreceptor mediation of thirst and vasopressin secretion in the dog
-
Thrasher T.N. Osmoreceptor mediation of thirst and vasopressin secretion in the dog. Fed. Proc. 1982, 41:2528-2532.
-
(1982)
Fed. Proc.
, vol.41
, pp. 2528-2532
-
-
Thrasher, T.N.1
-
12
-
-
0019015491
-
Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism?
-
Thrasher T.N., et al. Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1980, 238:R333-R339.
-
(1980)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.238
-
-
Thrasher, T.N.1
-
13
-
-
0016365480
-
Brain osmoreceptors, cerebrospinal fluid electrolyte composition and thirst
-
McKinley M.J., et al. Brain osmoreceptors, cerebrospinal fluid electrolyte composition and thirst. Brain Res. 1974, 70:532-537.
-
(1974)
Brain Res.
, vol.70
, pp. 532-537
-
-
McKinley, M.J.1
-
14
-
-
0017819172
-
Sensors for antidiuresis and thirst - osmoreceptors or CSF sodium detectors?
-
McKinley M.J., et al. Sensors for antidiuresis and thirst - osmoreceptors or CSF sodium detectors?. Brain Res. 1978, 141:89-103.
-
(1978)
Brain Res.
, vol.141
, pp. 89-103
-
-
McKinley, M.J.1
-
15
-
-
0041883664
-
The sensory circumventricular organs of the mammalian brain
-
Springer-Verlag, III-XII
-
McKinely M.J., et al. The sensory circumventricular organs of the mammalian brain. Advances in Anatomy Embryology and Cell Biology 2003, Vol. 172. Springer-Verlag, III-XII, pp. 1-122.
-
(2003)
Advances in Anatomy Embryology and Cell Biology
, vol.172
, pp. 1-122
-
-
McKinely, M.J.1
-
16
-
-
0028064687
-
Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing
-
McKinley M.J., et al. Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain Res. 1994, 653:305-314.
-
(1994)
Brain Res.
, vol.653
, pp. 305-314
-
-
McKinley, M.J.1
-
17
-
-
11144346108
-
Effects of water deprivation and rehydration on c-Fos and FosB staining in the rat supraoptic nucleus and lamina terminalis region
-
Ji L.L., et al. Effects of water deprivation and rehydration on c-Fos and FosB staining in the rat supraoptic nucleus and lamina terminalis region. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288:R311-R321.
-
(2005)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.288
-
-
Ji, L.L.1
-
18
-
-
0024590385
-
The supraoptic nucleus: afferents from areas involved in control of body fluid homeostasis
-
Wilkin L.D., et al. The supraoptic nucleus: afferents from areas involved in control of body fluid homeostasis. Neuroscience 1989, 28:573-584.
-
(1989)
Neuroscience
, vol.28
, pp. 573-584
-
-
Wilkin, L.D.1
-
19
-
-
0028299881
-
Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II
-
Oldfield B.J., et al. Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience 1994, 60:255-262.
-
(1994)
Neuroscience
, vol.60
, pp. 255-262
-
-
Oldfield, B.J.1
-
20
-
-
0015089316
-
Thirst and brain control of water balance
-
Andersson B. Thirst and brain control of water balance. Am. Sci. 1971, 59:408-415.
-
(1971)
Am. Sci.
, vol.59
, pp. 408-415
-
-
Andersson, B.1
-
21
-
-
0018402809
-
Osmosensitivity of rat third ventricle and interactions with angiotensin
-
Buggy J., et al. Osmosensitivity of rat third ventricle and interactions with angiotensin. Am. J. Physiol. 1979, 236:R75-R82.
-
(1979)
Am. J. Physiol.
, vol.236
-
-
Buggy, J.1
-
22
-
-
2442516299
-
Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis
-
McKinley M.J., et al. Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. J. Neuroendocrinol. 2004, 16:340-347.
-
(2004)
J. Neuroendocrinol.
, vol.16
, pp. 340-347
-
-
McKinley, M.J.1
-
23
-
-
0017517880
-
Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia
-
Buggy J., Johnson A.K. Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1977, 233:R44-R52.
-
(1977)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.233
-
-
Buggy, J.1
Johnson, A.K.2
-
24
-
-
0023276975
-
Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis
-
Thrasher T.N., Keil L.C. Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. Am. J. Physiol. 1987, 253:R108-R120.
-
(1987)
Am. J. Physiol.
, vol.253
-
-
Thrasher, T.N.1
Keil, L.C.2
-
25
-
-
0021629642
-
Role for the subfornical organ in vasopressin release
-
Mangiapane M.L., et al. Role for the subfornical organ in vasopressin release. Brain Res. Bull. 1984, 13:43-47.
-
(1984)
Brain Res. Bull.
, vol.13
, pp. 43-47
-
-
Mangiapane, M.L.1
-
26
-
-
3543135392
-
2+ contrasted T1-weighted MRI
-
2+ contrasted T1-weighted MRI. Auton. Neurosci. 2004, 113:43-54.
-
(2004)
Auton. Neurosci.
, vol.113
, pp. 43-54
-
-
Morita, H.1
-
27
-
-
10744222931
-
Neural correlates of the emergence of consciousness of thirst
-
Egan G., et al. Neural correlates of the emergence of consciousness of thirst. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:15241-15246.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 15241-15246
-
-
Egan, G.1
-
28
-
-
0031851695
-
Angiotensin, thirst, and sodium appetite
-
Fitzsimons J.T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 1998, 78:583-686.
-
(1998)
Physiol. Rev.
, vol.78
, pp. 583-686
-
-
Fitzsimons, J.T.1
-
29
-
-
2442642552
-
Salt appetite: a neurohormonal viewpoint
-
Daniels D., Fluharty S.J. Salt appetite: a neurohormonal viewpoint. Physiol. Behav. 2004, 81:319-337.
-
(2004)
Physiol. Behav.
, vol.81
, pp. 319-337
-
-
Daniels, D.1
Fluharty, S.J.2
-
30
-
-
20744451762
-
Disorders of water imbalance
-
ix
-
Lin M., et al. Disorders of water imbalance. Emerg. Med. Clin. North Am. 2005, 23:749-770. ix.
-
(2005)
Emerg. Med. Clin. North Am.
, vol.23
, pp. 749-770
-
-
Lin, M.1
-
31
-
-
0033636506
-
Nomenclature of voltage-gated sodium channels
-
Goldin A.L., et al. Nomenclature of voltage-gated sodium channels. Neuron 2000, 28:365-368.
-
(2000)
Neuron
, vol.28
, pp. 365-368
-
-
Goldin, A.L.1
-
32
-
-
0034666838
-
Nav2/NaG channel is involved in control of salt-intake behavior in the CNS
-
Watanabe E., et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J. Neurosci. 2000, 20:7743-7751.
-
(2000)
J. Neurosci.
, vol.20
, pp. 7743-7751
-
-
Watanabe, E.1
-
33
-
-
84864008009
-
+ sensor, Nax in the hydromineral homeostatic network: a comparative study between the rat and mouse
-
+ sensor, Nax in the hydromineral homeostatic network: a comparative study between the rat and mouse. Front. Neuroanat. 2012, 6:26.
-
(2012)
Front. Neuroanat.
, vol.6
, pp. 26
-
-
Nehmé, B.1
-
34
-
-
0037072471
-
Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice
-
Watanabe E., et al. Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neurosci. Lett. 2002, 330:109-113.
-
(2002)
Neurosci. Lett.
, vol.330
, pp. 109-113
-
-
Watanabe, E.1
-
35
-
-
0036271267
-
Nax channel involved in CNS sodium-level sensing
-
Hiyama T.Y., et al. Nax channel involved in CNS sodium-level sensing. Nat. Neurosci. 2002, 5:511-512.
-
(2002)
Nat. Neurosci.
, vol.5
, pp. 511-512
-
-
Hiyama, T.Y.1
-
36
-
-
31044435708
-
Sodium-level-sensitive sodium channel and salt-intake behavior
-
Noda M., Hiyama T.Y. Sodium-level-sensitive sodium channel and salt-intake behavior. Chem. Senses 2005, 30(Suppl. 1):i44-i45.
-
(2005)
Chem. Senses
, vol.30
, Issue.SUPPL. 1
-
-
Noda, M.1
Hiyama, T.Y.2
-
37
-
-
33645408817
-
Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs
-
Watanabe E., et al. Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290:R568-R576.
-
(2006)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.290
-
-
Watanabe, E.1
-
38
-
-
7044227669
-
The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior
-
Hiyama T.Y., et al. The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior. J. Neurosci. 2004, 24:9276-9281.
-
(2004)
J. Neurosci.
, vol.24
, pp. 9276-9281
-
-
Hiyama, T.Y.1
-
39
-
-
0037470746
-
A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs
-
Watanabe U., et al. A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs. Brain Res. 2003, 967:247-256.
-
(2003)
Brain Res.
, vol.967
, pp. 247-256
-
-
Watanabe, U.1
-
40
-
-
77649271929
-
Nax-deficient mice show normal vasopressin response to dehydration
-
Nagakura A., et al. Nax-deficient mice show normal vasopressin response to dehydration. Neurosci. Lett. 2010, 472:161-165.
-
(2010)
Neurosci. Lett.
, vol.472
, pp. 161-165
-
-
Nagakura, A.1
-
41
-
-
79957480650
-
Body fluids and salt metabolism-Part II
-
Peruzzo M., et al. Body fluids and salt metabolism-Part II. Ital. J. Pediatr. 2010, 36:78.
-
(2010)
Ital. J. Pediatr.
, vol.36
, pp. 78
-
-
Peruzzo, M.1
-
42
-
-
0021367908
-
Autoradiographic localization of angiotensin II receptors in rat brain
-
Mendelsohn F.A.O., et al. Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. U.S.A. 1984, 81:1575-1579.
-
(1984)
Proc. Natl. Acad. Sci. U.S.A.
, vol.81
, pp. 1575-1579
-
-
Mendelsohn, F.A.O.1
-
43
-
-
0022530501
-
Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats
-
Saavedra J.M., et al. Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats. Nature 1986, 320:758-760.
-
(1986)
Nature
, vol.320
, pp. 758-760
-
-
Saavedra, J.M.1
-
44
-
-
0346094442
-
Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat
-
Barth S.W., et al. Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res. 2004, 997:97-102.
-
(2004)
Brain Res.
, vol.997
, pp. 97-102
-
-
Barth, S.W.1
-
45
-
-
84875897097
-
Endothelin-3 expression in the subfornical organ enhances the sensitivity of Nax, the brain sodium-level sensor, to suppress salt intake
-
Hiyama T.Y., et al. Endothelin-3 expression in the subfornical organ enhances the sensitivity of Nax, the brain sodium-level sensor, to suppress salt intake. Cell Metab. 2013, 17:507-519.
-
(2013)
Cell Metab.
, vol.17
, pp. 507-519
-
-
Hiyama, T.Y.1
-
46
-
-
0035040924
-
Endothelin system: the double-edged sword in health and disease
-
Kedzierski R.M., Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxivol. 2001, 41:851-876.
-
(2001)
Annu. Rev. Pharmacol. Toxivol.
, vol.41
, pp. 851-876
-
-
Kedzierski, R.M.1
Yanagisawa, M.2
-
47
-
-
57749114648
-
Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation
-
Hindmarch C., et al. Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295:R1914-R1920.
-
(2008)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.295
-
-
Hindmarch, C.1
-
48
-
-
33947644899
-
+] sensing
-
+] sensing. Neuron 2007, 54:59-72.
-
(2007)
Neuron
, vol.54
, pp. 59-72
-
-
Shimizu, H.1
-
49
-
-
0032853219
-
Cellular and molecular biology of the aquaporin water channels
-
Borgnia M., et al. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 1999, 68:425-458.
-
(1999)
Annu. Rev. Biochem.
, vol.68
, pp. 425-458
-
-
Borgnia, M.1
-
50
-
-
79952292074
-
An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes
-
Benfenati V., et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2563-2568.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2563-2568
-
-
Benfenati, V.1
-
51
-
-
33744948236
-
A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery
-
Liu X., et al. A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J. Biol. Chem. 2006, 281:15485-15495.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 15485-15495
-
-
Liu, X.1
-
52
-
-
0030776196
-
OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans
-
Colbert H.A., et al. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 1997, 17:8259-8269.
-
(1997)
J. Neurosci.
, vol.17
, pp. 8259-8269
-
-
Colbert, H.A.1
-
53
-
-
0344630199
-
Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans
-
Liedtke W., et al. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(Suppl. 2):14531-14536.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, Issue.SUPPL. 2
, pp. 14531-14536
-
-
Liedtke, W.1
-
54
-
-
0034721648
-
Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor
-
Liedtke W., et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000, 103:525-535.
-
(2000)
Cell
, vol.103
, pp. 525-535
-
-
Liedtke, W.1
-
56
-
-
0038679330
-
Impaired osmotic sensation in mice lacking TRPV4
-
Mizuno A., et al. Impaired osmotic sensation in mice lacking TRPV4. Am. J. Physiol. Cell Physiol. 2003, 285:C96-C101.
-
(2003)
Am. J. Physiol. Cell Physiol.
, vol.285
-
-
Mizuno, A.1
-
57
-
-
29444456617
-
An N-terminal variant of Trpv1 channel is required for osmosensory transduction
-
Sharif-Naeini R., et al. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat. Neurosci. 2006, 9:93-98.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 93-98
-
-
Sharif-Naeini, R.1
-
58
-
-
33748255730
-
Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality
-
Ciura S., Bourque C.W. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 2006, 26:9069-9075.
-
(2006)
J. Neurosci.
, vol.26
, pp. 9069-9075
-
-
Ciura, S.1
Bourque, C.W.2
-
59
-
-
41749085974
-
Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia
-
Taylor A.C., et al. Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294:R1285-R1293.
-
(2008)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.294
-
-
Taylor, A.C.1
-
60
-
-
80054037184
-
Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4
-
Ciura S., et al. Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. J. Neurosci. 2011, 31:14669-14676.
-
(2011)
J. Neurosci.
, vol.31
, pp. 14669-14676
-
-
Ciura, S.1
-
61
-
-
0030024654
-
Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons
-
Oliet S.H., Bourque C.W. Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons. Neuron 1996, 16:175-181.
-
(1996)
Neuron
, vol.16
, pp. 175-181
-
-
Oliet, S.H.1
Bourque, C.W.2
-
62
-
-
79960324393
-
Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons
-
Nishihara E., et al. Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS ONE 2011, 6:e22246.
-
(2011)
PLoS ONE
, vol.6
-
-
Nishihara, E.1
-
63
-
-
0242266967
-
TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes
-
Muraki K., et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 2003, 93:829-838.
-
(2003)
Circ. Res.
, vol.93
, pp. 829-838
-
-
Muraki, K.1
-
64
-
-
2542507402
-
Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications implications for regulatory activity within the hypothalamic-pituitary-adrenal axis
-
Wainwright A., et al. Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications implications for regulatory activity within the hypothalamic-pituitary-adrenal axis. J. Comp. Neurol. 2004, 474:24-42.
-
(2004)
J. Comp. Neurol.
, vol.474
, pp. 24-42
-
-
Wainwright, A.1
-
65
-
-
29844451971
-
International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels
-
Clapham D.E., et al. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol. Rev. 2005, 57:427-450.
-
(2005)
Pharmacol. Rev.
, vol.57
, pp. 427-450
-
-
Clapham, D.E.1
-
66
-
-
27544451604
-
Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia
-
Rutter A.R., et al. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 2005, 16:1735-1739.
-
(2005)
Neuroreport
, vol.16
, pp. 1735-1739
-
-
Rutter, A.R.1
-
67
-
-
0038498142
-
Molecular and functional characterization of the melastatin-related cation channel TRPM3
-
Grimm C., et al. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 2003, 278:21493-21501.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 21493-21501
-
-
Grimm, C.1
-
68
-
-
0345616438
-
ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures
-
Story G.M., et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112:819-829.
-
(2003)
Cell
, vol.112
, pp. 819-829
-
-
Story, G.M.1
-
69
-
-
39049158670
-
Transient receptor potential A1 mediates an osmotically activated ion channel
-
Zhang X.F., et al. Transient receptor potential A1 mediates an osmotically activated ion channel. Eur. J. Neurosci. 2008, 27:605-611.
-
(2008)
Eur. J. Neurosci.
, vol.27
, pp. 605-611
-
-
Zhang, X.F.1
-
70
-
-
0033051150
-
Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels
-
Lee J-H., et al. Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels. FEBS Lett. 1999, 445:231-236.
-
(1999)
FEBS Lett.
, vol.445
, pp. 231-236
-
-
Lee, J.-H.1
-
71
-
-
79955745745
-
Genetic analysis of mouse strains with variable serum sodium concentrations identifies the Nalcn sodium channel as a novel player in osmoregulation
-
Sinke A.P., et al. Genetic analysis of mouse strains with variable serum sodium concentrations identifies the Nalcn sodium channel as a novel player in osmoregulation. Physiol. Genomics 2011, 43:265-270.
-
(2011)
Physiol. Genomics
, vol.43
, pp. 265-270
-
-
Sinke, A.P.1
-
72
-
-
34147114722
-
The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm
-
Lu B., et al. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 2007, 129:371-383.
-
(2007)
Cell
, vol.129
, pp. 371-383
-
-
Lu, B.1
-
73
-
-
0037072735
-
Molecular determinants of permeation through the cation channel TRPV4
-
Voets T., et al. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 2002, 277:33704-33710.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 33704-33710
-
-
Voets, T.1
-
74
-
-
4043077669
-
The principle of temperature-dependent gating in cold and heat-sensitive TRP channels
-
Voets T., et al. The principle of temperature-dependent gating in cold and heat-sensitive TRP channels. Nature 2004, 430:748-754.
-
(2004)
Nature
, vol.430
, pp. 748-754
-
-
Voets, T.1
-
75
-
-
65649147153
-
+ channels TRAAK and TREK-1 control both warm and cold perception
-
+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 2009, 28:1308-1318.
-
(2009)
EMBO J.
, vol.28
, pp. 1308-1318
-
-
Noel, J.1
-
76
-
-
0034213381
-
+ channel
-
+ channel. EMBO J. 2000, 19:2483-2491.
-
(2000)
EMBO J.
, vol.19
, pp. 2483-2491
-
-
Maingret, F.1
-
78
-
-
0032479997
-
+ channel
-
+ channel. EMBO J. 1998, 17:4283-4290.
-
(1998)
EMBO J.
, vol.17
, pp. 4283-4290
-
-
Patel, A.J.1
-
79
-
-
0034625330
-
+ channel family
-
+ channel family. J. Biol. Chem. 2000, 275:17412-17419.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 17412-17419
-
-
Bang, H.1
-
80
-
-
33745741107
-
+ channel involved in polymodal pain perception
-
+ channel involved in polymodal pain perception. EMBO J. 2006, 25:2368-2376.
-
(2006)
EMBO J.
, vol.25
, pp. 2368-2376
-
-
Alloui, A.1
-
81
-
-
0037320918
-
Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus
-
Han J., et al. Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus. J. Physiol. 2003, 546:625-639.
-
(2003)
J. Physiol.
, vol.546
, pp. 625-639
-
-
Han, J.1
-
82
-
-
77953263987
-
Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia
-
Hiyama T.Y., et al. Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia. Neuron 2010, 66:508-522.
-
(2010)
Neuron
, vol.66
, pp. 508-522
-
-
Hiyama, T.Y.1
-
83
-
-
84873245493
-
Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors
-
Szathmari A., et al. Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors. Neuropathology 2013, 33:17-29.
-
(2013)
Neuropathology
, vol.33
, pp. 17-29
-
-
Szathmari, A.1
-
84
-
-
33745845825
-
Physiology of local renin-angiotensin systems
-
Paul M., et al. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006, 86:747-803.
-
(2006)
Physiol. Rev.
, vol.86
, pp. 747-803
-
-
Paul, M.1
-
85
-
-
0018508763
-
Nonpressor mechanisms in CNS-induced natriuresis
-
Mouw D.R., et al. Nonpressor mechanisms in CNS-induced natriuresis. Am. J. Physiol. Renal Physiol. 1979, 237:F157-F166.
-
(1979)
Am. J. Physiol. Renal Physiol.
, vol.237
-
-
Mouw, D.R.1
-
86
-
-
0026873353
-
Common aspects of the cerebral regulation of thirst and renal sodium excretion
-
McKinley M.J. Common aspects of the cerebral regulation of thirst and renal sodium excretion. Kidney Int. 1992, 37:S102-S106.
-
(1992)
Kidney Int.
, vol.37
-
-
McKinley, M.J.1
-
87
-
-
34247204699
-
Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain
-
Noda M. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Exp. Physiol. 2007, 92:513-522.
-
(2007)
Exp. Physiol.
, vol.92
, pp. 513-522
-
-
Noda, M.1
-
88
-
-
38349081017
-
Central regulation of sodium appetite
-
Geerling J.C., Loewy A.D. Central regulation of sodium appetite. Exp. Physiol. 2008, 93:177-209.
-
(2008)
Exp. Physiol.
, vol.93
, pp. 177-209
-
-
Geerling, J.C.1
Loewy, A.D.2
-
89
-
-
0035133295
-
Sodium-potassium-adenosine triphosphatase-dependent sodium transport in the kidney: hormonal control
-
Féraille E., Doucet A. Sodium-potassium-adenosine triphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol. Rev. 2001, 81:345-418.
-
(2001)
Physiol. Rev.
, vol.81
, pp. 345-418
-
-
Féraille, E.1
Doucet, A.2
-
90
-
-
0242300262
-
Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse
-
Tamamaki N., et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 2003, 467:60-79.
-
(2003)
J. Comp. Neurol.
, vol.467
, pp. 60-79
-
-
Tamamaki, N.1
|