메뉴 건너뛰기




Volumn 36, Issue 11, 2013, Pages 661-673

Central regulation of body-fluid homeostasis

Author keywords

[No Author keywords available]

Indexed keywords

CATION CHANNEL; LACTIC ACID; POTASSIUM CHANNEL; POTASSIUM CHANNEL TRAAK; POTASSIUM CHANNEL TREK 1; POTASSIUM CHANNEL TREK 2; SODIUM; SODIUM CHANNEL; SODIUM LEAK CHANNEL; TRANSIENT RECEPTOR POTENTIAL CHANNEL; TRANSIENT RECEPTOR POTENTIAL CHANNEL 1; TRANSIENT RECEPTOR POTENTIAL CHANNEL 4; UNCLASSIFIED DRUG; VASOPRESSIN; VOLTAGE GATED SODIUM CHANNEL;

EID: 84886953543     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2013.08.004     Document Type: Review
Times cited : (50)

References (90)
  • 1
    • 0018230313 scopus 로고
    • Regulation of water intake
    • Andersson B. Regulation of water intake. Physiol. Rev. 1978, 58:582.
    • (1978) Physiol. Rev. , vol.58 , pp. 582
    • Andersson, B.1
  • 2
    • 0017445303 scopus 로고
    • Regulation of body fluids
    • Andersson B. Regulation of body fluids. Annu. Rev. Physiol. 1977, 39:185-200.
    • (1977) Annu. Rev. Physiol. , vol.39 , pp. 185-200
    • Andersson, B.1
  • 3
    • 0027282240 scopus 로고
    • Management of hyponatraemia
    • Arieff A.I. Management of hyponatraemia. BMJ 1993, 307:305-308.
    • (1993) BMJ , vol.307 , pp. 305-308
    • Arieff, A.I.1
  • 4
    • 0029914808 scopus 로고    scopus 로고
    • Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits
    • Ayus J.C., et al. Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits. J. Physiol. 1996, 492:243-255.
    • (1996) J. Physiol. , vol.492 , pp. 243-255
    • Ayus, J.C.1
  • 6
    • 0347989460 scopus 로고    scopus 로고
    • Neuroendocrine control of body fluid metabolism
    • Antunes-Rodrigues J., et al. Neuroendocrine control of body fluid metabolism. Physiol. Rev. 2004, 84:169-208.
    • (2004) Physiol. Rev. , vol.84 , pp. 169-208
    • Antunes-Rodrigues, J.1
  • 7
    • 0023780847 scopus 로고
    • Control of release of vasopressin by neuroendocrine reflexes
    • Bisset G.W., Chowdrey H.S. Control of release of vasopressin by neuroendocrine reflexes. Q. J. Exp. Physiol. 1988, 73:811-872.
    • (1988) Q. J. Exp. Physiol. , vol.73 , pp. 811-872
    • Bisset, G.W.1    Chowdrey, H.S.2
  • 8
    • 0017177967 scopus 로고
    • The osmoregulation of vasopressin
    • Robertson G.L., et al. The osmoregulation of vasopressin. Kidney Int. 1976, 10:25-37.
    • (1976) Kidney Int. , vol.10 , pp. 25-37
    • Robertson, G.L.1
  • 9
    • 26944478620 scopus 로고
    • The antidiuretic hormone and the factors which determine its release
    • Verney E.B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. B: Biol. Sci. 1947, 135:25-106.
    • (1947) Proc. R. Soc. Lond. B: Biol. Sci. , vol.135 , pp. 25-106
    • Verney, E.B.1
  • 10
    • 0015180998 scopus 로고
    • Differences in the antidiuretic response to intracarotid infusions of various hypertonic solutions in the conscious goat
    • Eriksson L., et al. Differences in the antidiuretic response to intracarotid infusions of various hypertonic solutions in the conscious goat. Acta Physiol. Scand. 1971, 83:554-562.
    • (1971) Acta Physiol. Scand. , vol.83 , pp. 554-562
    • Eriksson, L.1
  • 11
    • 0020325861 scopus 로고
    • Osmoreceptor mediation of thirst and vasopressin secretion in the dog
    • Thrasher T.N. Osmoreceptor mediation of thirst and vasopressin secretion in the dog. Fed. Proc. 1982, 41:2528-2532.
    • (1982) Fed. Proc. , vol.41 , pp. 2528-2532
    • Thrasher, T.N.1
  • 12
    • 0019015491 scopus 로고
    • Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism?
    • Thrasher T.N., et al. Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1980, 238:R333-R339.
    • (1980) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.238
    • Thrasher, T.N.1
  • 13
    • 0016365480 scopus 로고
    • Brain osmoreceptors, cerebrospinal fluid electrolyte composition and thirst
    • McKinley M.J., et al. Brain osmoreceptors, cerebrospinal fluid electrolyte composition and thirst. Brain Res. 1974, 70:532-537.
    • (1974) Brain Res. , vol.70 , pp. 532-537
    • McKinley, M.J.1
  • 14
    • 0017819172 scopus 로고
    • Sensors for antidiuresis and thirst - osmoreceptors or CSF sodium detectors?
    • McKinley M.J., et al. Sensors for antidiuresis and thirst - osmoreceptors or CSF sodium detectors?. Brain Res. 1978, 141:89-103.
    • (1978) Brain Res. , vol.141 , pp. 89-103
    • McKinley, M.J.1
  • 15
    • 0041883664 scopus 로고    scopus 로고
    • The sensory circumventricular organs of the mammalian brain
    • Springer-Verlag, III-XII
    • McKinely M.J., et al. The sensory circumventricular organs of the mammalian brain. Advances in Anatomy Embryology and Cell Biology 2003, Vol. 172. Springer-Verlag, III-XII, pp. 1-122.
    • (2003) Advances in Anatomy Embryology and Cell Biology , vol.172 , pp. 1-122
    • McKinely, M.J.1
  • 16
    • 0028064687 scopus 로고
    • Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing
    • McKinley M.J., et al. Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain Res. 1994, 653:305-314.
    • (1994) Brain Res. , vol.653 , pp. 305-314
    • McKinley, M.J.1
  • 17
    • 11144346108 scopus 로고    scopus 로고
    • Effects of water deprivation and rehydration on c-Fos and FosB staining in the rat supraoptic nucleus and lamina terminalis region
    • Ji L.L., et al. Effects of water deprivation and rehydration on c-Fos and FosB staining in the rat supraoptic nucleus and lamina terminalis region. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288:R311-R321.
    • (2005) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.288
    • Ji, L.L.1
  • 18
    • 0024590385 scopus 로고
    • The supraoptic nucleus: afferents from areas involved in control of body fluid homeostasis
    • Wilkin L.D., et al. The supraoptic nucleus: afferents from areas involved in control of body fluid homeostasis. Neuroscience 1989, 28:573-584.
    • (1989) Neuroscience , vol.28 , pp. 573-584
    • Wilkin, L.D.1
  • 19
    • 0028299881 scopus 로고
    • Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II
    • Oldfield B.J., et al. Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience 1994, 60:255-262.
    • (1994) Neuroscience , vol.60 , pp. 255-262
    • Oldfield, B.J.1
  • 20
    • 0015089316 scopus 로고
    • Thirst and brain control of water balance
    • Andersson B. Thirst and brain control of water balance. Am. Sci. 1971, 59:408-415.
    • (1971) Am. Sci. , vol.59 , pp. 408-415
    • Andersson, B.1
  • 21
    • 0018402809 scopus 로고
    • Osmosensitivity of rat third ventricle and interactions with angiotensin
    • Buggy J., et al. Osmosensitivity of rat third ventricle and interactions with angiotensin. Am. J. Physiol. 1979, 236:R75-R82.
    • (1979) Am. J. Physiol. , vol.236
    • Buggy, J.1
  • 22
    • 2442516299 scopus 로고    scopus 로고
    • Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis
    • McKinley M.J., et al. Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. J. Neuroendocrinol. 2004, 16:340-347.
    • (2004) J. Neuroendocrinol. , vol.16 , pp. 340-347
    • McKinley, M.J.1
  • 23
    • 0017517880 scopus 로고
    • Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia
    • Buggy J., Johnson A.K. Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1977, 233:R44-R52.
    • (1977) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.233
    • Buggy, J.1    Johnson, A.K.2
  • 24
    • 0023276975 scopus 로고
    • Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis
    • Thrasher T.N., Keil L.C. Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. Am. J. Physiol. 1987, 253:R108-R120.
    • (1987) Am. J. Physiol. , vol.253
    • Thrasher, T.N.1    Keil, L.C.2
  • 25
    • 0021629642 scopus 로고
    • Role for the subfornical organ in vasopressin release
    • Mangiapane M.L., et al. Role for the subfornical organ in vasopressin release. Brain Res. Bull. 1984, 13:43-47.
    • (1984) Brain Res. Bull. , vol.13 , pp. 43-47
    • Mangiapane, M.L.1
  • 26
    • 3543135392 scopus 로고    scopus 로고
    • 2+ contrasted T1-weighted MRI
    • 2+ contrasted T1-weighted MRI. Auton. Neurosci. 2004, 113:43-54.
    • (2004) Auton. Neurosci. , vol.113 , pp. 43-54
    • Morita, H.1
  • 27
    • 10744222931 scopus 로고    scopus 로고
    • Neural correlates of the emergence of consciousness of thirst
    • Egan G., et al. Neural correlates of the emergence of consciousness of thirst. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:15241-15246.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 15241-15246
    • Egan, G.1
  • 28
    • 0031851695 scopus 로고    scopus 로고
    • Angiotensin, thirst, and sodium appetite
    • Fitzsimons J.T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 1998, 78:583-686.
    • (1998) Physiol. Rev. , vol.78 , pp. 583-686
    • Fitzsimons, J.T.1
  • 29
    • 2442642552 scopus 로고    scopus 로고
    • Salt appetite: a neurohormonal viewpoint
    • Daniels D., Fluharty S.J. Salt appetite: a neurohormonal viewpoint. Physiol. Behav. 2004, 81:319-337.
    • (2004) Physiol. Behav. , vol.81 , pp. 319-337
    • Daniels, D.1    Fluharty, S.J.2
  • 30
    • 20744451762 scopus 로고    scopus 로고
    • Disorders of water imbalance
    • ix
    • Lin M., et al. Disorders of water imbalance. Emerg. Med. Clin. North Am. 2005, 23:749-770. ix.
    • (2005) Emerg. Med. Clin. North Am. , vol.23 , pp. 749-770
    • Lin, M.1
  • 31
    • 0033636506 scopus 로고    scopus 로고
    • Nomenclature of voltage-gated sodium channels
    • Goldin A.L., et al. Nomenclature of voltage-gated sodium channels. Neuron 2000, 28:365-368.
    • (2000) Neuron , vol.28 , pp. 365-368
    • Goldin, A.L.1
  • 32
    • 0034666838 scopus 로고    scopus 로고
    • Nav2/NaG channel is involved in control of salt-intake behavior in the CNS
    • Watanabe E., et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J. Neurosci. 2000, 20:7743-7751.
    • (2000) J. Neurosci. , vol.20 , pp. 7743-7751
    • Watanabe, E.1
  • 33
    • 84864008009 scopus 로고    scopus 로고
    • + sensor, Nax in the hydromineral homeostatic network: a comparative study between the rat and mouse
    • + sensor, Nax in the hydromineral homeostatic network: a comparative study between the rat and mouse. Front. Neuroanat. 2012, 6:26.
    • (2012) Front. Neuroanat. , vol.6 , pp. 26
    • Nehmé, B.1
  • 34
    • 0037072471 scopus 로고    scopus 로고
    • Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice
    • Watanabe E., et al. Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neurosci. Lett. 2002, 330:109-113.
    • (2002) Neurosci. Lett. , vol.330 , pp. 109-113
    • Watanabe, E.1
  • 35
    • 0036271267 scopus 로고    scopus 로고
    • Nax channel involved in CNS sodium-level sensing
    • Hiyama T.Y., et al. Nax channel involved in CNS sodium-level sensing. Nat. Neurosci. 2002, 5:511-512.
    • (2002) Nat. Neurosci. , vol.5 , pp. 511-512
    • Hiyama, T.Y.1
  • 36
    • 31044435708 scopus 로고    scopus 로고
    • Sodium-level-sensitive sodium channel and salt-intake behavior
    • Noda M., Hiyama T.Y. Sodium-level-sensitive sodium channel and salt-intake behavior. Chem. Senses 2005, 30(Suppl. 1):i44-i45.
    • (2005) Chem. Senses , vol.30 , Issue.SUPPL. 1
    • Noda, M.1    Hiyama, T.Y.2
  • 37
    • 33645408817 scopus 로고    scopus 로고
    • Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs
    • Watanabe E., et al. Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290:R568-R576.
    • (2006) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.290
    • Watanabe, E.1
  • 38
    • 7044227669 scopus 로고    scopus 로고
    • The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior
    • Hiyama T.Y., et al. The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior. J. Neurosci. 2004, 24:9276-9281.
    • (2004) J. Neurosci. , vol.24 , pp. 9276-9281
    • Hiyama, T.Y.1
  • 39
    • 0037470746 scopus 로고    scopus 로고
    • A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs
    • Watanabe U., et al. A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs. Brain Res. 2003, 967:247-256.
    • (2003) Brain Res. , vol.967 , pp. 247-256
    • Watanabe, U.1
  • 40
    • 77649271929 scopus 로고    scopus 로고
    • Nax-deficient mice show normal vasopressin response to dehydration
    • Nagakura A., et al. Nax-deficient mice show normal vasopressin response to dehydration. Neurosci. Lett. 2010, 472:161-165.
    • (2010) Neurosci. Lett. , vol.472 , pp. 161-165
    • Nagakura, A.1
  • 41
    • 79957480650 scopus 로고    scopus 로고
    • Body fluids and salt metabolism-Part II
    • Peruzzo M., et al. Body fluids and salt metabolism-Part II. Ital. J. Pediatr. 2010, 36:78.
    • (2010) Ital. J. Pediatr. , vol.36 , pp. 78
    • Peruzzo, M.1
  • 42
    • 0021367908 scopus 로고
    • Autoradiographic localization of angiotensin II receptors in rat brain
    • Mendelsohn F.A.O., et al. Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. U.S.A. 1984, 81:1575-1579.
    • (1984) Proc. Natl. Acad. Sci. U.S.A. , vol.81 , pp. 1575-1579
    • Mendelsohn, F.A.O.1
  • 43
    • 0022530501 scopus 로고
    • Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats
    • Saavedra J.M., et al. Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats. Nature 1986, 320:758-760.
    • (1986) Nature , vol.320 , pp. 758-760
    • Saavedra, J.M.1
  • 44
    • 0346094442 scopus 로고    scopus 로고
    • Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat
    • Barth S.W., et al. Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res. 2004, 997:97-102.
    • (2004) Brain Res. , vol.997 , pp. 97-102
    • Barth, S.W.1
  • 45
    • 84875897097 scopus 로고    scopus 로고
    • Endothelin-3 expression in the subfornical organ enhances the sensitivity of Nax, the brain sodium-level sensor, to suppress salt intake
    • Hiyama T.Y., et al. Endothelin-3 expression in the subfornical organ enhances the sensitivity of Nax, the brain sodium-level sensor, to suppress salt intake. Cell Metab. 2013, 17:507-519.
    • (2013) Cell Metab. , vol.17 , pp. 507-519
    • Hiyama, T.Y.1
  • 46
    • 0035040924 scopus 로고    scopus 로고
    • Endothelin system: the double-edged sword in health and disease
    • Kedzierski R.M., Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxivol. 2001, 41:851-876.
    • (2001) Annu. Rev. Pharmacol. Toxivol. , vol.41 , pp. 851-876
    • Kedzierski, R.M.1    Yanagisawa, M.2
  • 47
    • 57749114648 scopus 로고    scopus 로고
    • Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation
    • Hindmarch C., et al. Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295:R1914-R1920.
    • (2008) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.295
    • Hindmarch, C.1
  • 48
    • 33947644899 scopus 로고    scopus 로고
    • +] sensing
    • +] sensing. Neuron 2007, 54:59-72.
    • (2007) Neuron , vol.54 , pp. 59-72
    • Shimizu, H.1
  • 49
    • 0032853219 scopus 로고    scopus 로고
    • Cellular and molecular biology of the aquaporin water channels
    • Borgnia M., et al. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 1999, 68:425-458.
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 425-458
    • Borgnia, M.1
  • 50
    • 79952292074 scopus 로고    scopus 로고
    • An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes
    • Benfenati V., et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2563-2568.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2563-2568
    • Benfenati, V.1
  • 51
    • 33744948236 scopus 로고    scopus 로고
    • A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery
    • Liu X., et al. A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J. Biol. Chem. 2006, 281:15485-15495.
    • (2006) J. Biol. Chem. , vol.281 , pp. 15485-15495
    • Liu, X.1
  • 52
    • 0030776196 scopus 로고    scopus 로고
    • OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans
    • Colbert H.A., et al. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 1997, 17:8259-8269.
    • (1997) J. Neurosci. , vol.17 , pp. 8259-8269
    • Colbert, H.A.1
  • 53
    • 0344630199 scopus 로고    scopus 로고
    • Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans
    • Liedtke W., et al. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 2003, 100(Suppl. 2):14531-14536.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , Issue.SUPPL. 2 , pp. 14531-14536
    • Liedtke, W.1
  • 54
    • 0034721648 scopus 로고    scopus 로고
    • Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor
    • Liedtke W., et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000, 103:525-535.
    • (2000) Cell , vol.103 , pp. 525-535
    • Liedtke, W.1
  • 56
    • 0038679330 scopus 로고    scopus 로고
    • Impaired osmotic sensation in mice lacking TRPV4
    • Mizuno A., et al. Impaired osmotic sensation in mice lacking TRPV4. Am. J. Physiol. Cell Physiol. 2003, 285:C96-C101.
    • (2003) Am. J. Physiol. Cell Physiol. , vol.285
    • Mizuno, A.1
  • 57
    • 29444456617 scopus 로고    scopus 로고
    • An N-terminal variant of Trpv1 channel is required for osmosensory transduction
    • Sharif-Naeini R., et al. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat. Neurosci. 2006, 9:93-98.
    • (2006) Nat. Neurosci. , vol.9 , pp. 93-98
    • Sharif-Naeini, R.1
  • 58
    • 33748255730 scopus 로고    scopus 로고
    • Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality
    • Ciura S., Bourque C.W. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 2006, 26:9069-9075.
    • (2006) J. Neurosci. , vol.26 , pp. 9069-9075
    • Ciura, S.1    Bourque, C.W.2
  • 59
    • 41749085974 scopus 로고    scopus 로고
    • Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia
    • Taylor A.C., et al. Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294:R1285-R1293.
    • (2008) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.294
    • Taylor, A.C.1
  • 60
    • 80054037184 scopus 로고    scopus 로고
    • Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4
    • Ciura S., et al. Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. J. Neurosci. 2011, 31:14669-14676.
    • (2011) J. Neurosci. , vol.31 , pp. 14669-14676
    • Ciura, S.1
  • 61
    • 0030024654 scopus 로고    scopus 로고
    • Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons
    • Oliet S.H., Bourque C.W. Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons. Neuron 1996, 16:175-181.
    • (1996) Neuron , vol.16 , pp. 175-181
    • Oliet, S.H.1    Bourque, C.W.2
  • 62
    • 79960324393 scopus 로고    scopus 로고
    • Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons
    • Nishihara E., et al. Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS ONE 2011, 6:e22246.
    • (2011) PLoS ONE , vol.6
    • Nishihara, E.1
  • 63
    • 0242266967 scopus 로고    scopus 로고
    • TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes
    • Muraki K., et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 2003, 93:829-838.
    • (2003) Circ. Res. , vol.93 , pp. 829-838
    • Muraki, K.1
  • 64
    • 2542507402 scopus 로고    scopus 로고
    • Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications implications for regulatory activity within the hypothalamic-pituitary-adrenal axis
    • Wainwright A., et al. Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications implications for regulatory activity within the hypothalamic-pituitary-adrenal axis. J. Comp. Neurol. 2004, 474:24-42.
    • (2004) J. Comp. Neurol. , vol.474 , pp. 24-42
    • Wainwright, A.1
  • 65
    • 29844451971 scopus 로고    scopus 로고
    • International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels
    • Clapham D.E., et al. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol. Rev. 2005, 57:427-450.
    • (2005) Pharmacol. Rev. , vol.57 , pp. 427-450
    • Clapham, D.E.1
  • 66
    • 27544451604 scopus 로고    scopus 로고
    • Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia
    • Rutter A.R., et al. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 2005, 16:1735-1739.
    • (2005) Neuroreport , vol.16 , pp. 1735-1739
    • Rutter, A.R.1
  • 67
    • 0038498142 scopus 로고    scopus 로고
    • Molecular and functional characterization of the melastatin-related cation channel TRPM3
    • Grimm C., et al. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 2003, 278:21493-21501.
    • (2003) J. Biol. Chem. , vol.278 , pp. 21493-21501
    • Grimm, C.1
  • 68
    • 0345616438 scopus 로고    scopus 로고
    • ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures
    • Story G.M., et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112:819-829.
    • (2003) Cell , vol.112 , pp. 819-829
    • Story, G.M.1
  • 69
    • 39049158670 scopus 로고    scopus 로고
    • Transient receptor potential A1 mediates an osmotically activated ion channel
    • Zhang X.F., et al. Transient receptor potential A1 mediates an osmotically activated ion channel. Eur. J. Neurosci. 2008, 27:605-611.
    • (2008) Eur. J. Neurosci. , vol.27 , pp. 605-611
    • Zhang, X.F.1
  • 70
    • 0033051150 scopus 로고    scopus 로고
    • Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels
    • Lee J-H., et al. Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels. FEBS Lett. 1999, 445:231-236.
    • (1999) FEBS Lett. , vol.445 , pp. 231-236
    • Lee, J.-H.1
  • 71
    • 79955745745 scopus 로고    scopus 로고
    • Genetic analysis of mouse strains with variable serum sodium concentrations identifies the Nalcn sodium channel as a novel player in osmoregulation
    • Sinke A.P., et al. Genetic analysis of mouse strains with variable serum sodium concentrations identifies the Nalcn sodium channel as a novel player in osmoregulation. Physiol. Genomics 2011, 43:265-270.
    • (2011) Physiol. Genomics , vol.43 , pp. 265-270
    • Sinke, A.P.1
  • 72
    • 34147114722 scopus 로고    scopus 로고
    • The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm
    • Lu B., et al. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 2007, 129:371-383.
    • (2007) Cell , vol.129 , pp. 371-383
    • Lu, B.1
  • 73
    • 0037072735 scopus 로고    scopus 로고
    • Molecular determinants of permeation through the cation channel TRPV4
    • Voets T., et al. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 2002, 277:33704-33710.
    • (2002) J. Biol. Chem. , vol.277 , pp. 33704-33710
    • Voets, T.1
  • 74
    • 4043077669 scopus 로고    scopus 로고
    • The principle of temperature-dependent gating in cold and heat-sensitive TRP channels
    • Voets T., et al. The principle of temperature-dependent gating in cold and heat-sensitive TRP channels. Nature 2004, 430:748-754.
    • (2004) Nature , vol.430 , pp. 748-754
    • Voets, T.1
  • 75
    • 65649147153 scopus 로고    scopus 로고
    • + channels TRAAK and TREK-1 control both warm and cold perception
    • + channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 2009, 28:1308-1318.
    • (2009) EMBO J. , vol.28 , pp. 1308-1318
    • Noel, J.1
  • 76
    • 0034213381 scopus 로고    scopus 로고
    • + channel
    • + channel. EMBO J. 2000, 19:2483-2491.
    • (2000) EMBO J. , vol.19 , pp. 2483-2491
    • Maingret, F.1
  • 78
    • 0032479997 scopus 로고    scopus 로고
    • + channel
    • + channel. EMBO J. 1998, 17:4283-4290.
    • (1998) EMBO J. , vol.17 , pp. 4283-4290
    • Patel, A.J.1
  • 79
    • 0034625330 scopus 로고    scopus 로고
    • + channel family
    • + channel family. J. Biol. Chem. 2000, 275:17412-17419.
    • (2000) J. Biol. Chem. , vol.275 , pp. 17412-17419
    • Bang, H.1
  • 80
    • 33745741107 scopus 로고    scopus 로고
    • + channel involved in polymodal pain perception
    • + channel involved in polymodal pain perception. EMBO J. 2006, 25:2368-2376.
    • (2006) EMBO J. , vol.25 , pp. 2368-2376
    • Alloui, A.1
  • 81
    • 0037320918 scopus 로고    scopus 로고
    • Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus
    • Han J., et al. Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus. J. Physiol. 2003, 546:625-639.
    • (2003) J. Physiol. , vol.546 , pp. 625-639
    • Han, J.1
  • 82
    • 77953263987 scopus 로고    scopus 로고
    • Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia
    • Hiyama T.Y., et al. Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia. Neuron 2010, 66:508-522.
    • (2010) Neuron , vol.66 , pp. 508-522
    • Hiyama, T.Y.1
  • 83
    • 84873245493 scopus 로고    scopus 로고
    • Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors
    • Szathmari A., et al. Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors. Neuropathology 2013, 33:17-29.
    • (2013) Neuropathology , vol.33 , pp. 17-29
    • Szathmari, A.1
  • 84
    • 33745845825 scopus 로고    scopus 로고
    • Physiology of local renin-angiotensin systems
    • Paul M., et al. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006, 86:747-803.
    • (2006) Physiol. Rev. , vol.86 , pp. 747-803
    • Paul, M.1
  • 85
    • 0018508763 scopus 로고
    • Nonpressor mechanisms in CNS-induced natriuresis
    • Mouw D.R., et al. Nonpressor mechanisms in CNS-induced natriuresis. Am. J. Physiol. Renal Physiol. 1979, 237:F157-F166.
    • (1979) Am. J. Physiol. Renal Physiol. , vol.237
    • Mouw, D.R.1
  • 86
    • 0026873353 scopus 로고
    • Common aspects of the cerebral regulation of thirst and renal sodium excretion
    • McKinley M.J. Common aspects of the cerebral regulation of thirst and renal sodium excretion. Kidney Int. 1992, 37:S102-S106.
    • (1992) Kidney Int. , vol.37
    • McKinley, M.J.1
  • 87
    • 34247204699 scopus 로고    scopus 로고
    • Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain
    • Noda M. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Exp. Physiol. 2007, 92:513-522.
    • (2007) Exp. Physiol. , vol.92 , pp. 513-522
    • Noda, M.1
  • 88
    • 38349081017 scopus 로고    scopus 로고
    • Central regulation of sodium appetite
    • Geerling J.C., Loewy A.D. Central regulation of sodium appetite. Exp. Physiol. 2008, 93:177-209.
    • (2008) Exp. Physiol. , vol.93 , pp. 177-209
    • Geerling, J.C.1    Loewy, A.D.2
  • 89
    • 0035133295 scopus 로고    scopus 로고
    • Sodium-potassium-adenosine triphosphatase-dependent sodium transport in the kidney: hormonal control
    • Féraille E., Doucet A. Sodium-potassium-adenosine triphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol. Rev. 2001, 81:345-418.
    • (2001) Physiol. Rev. , vol.81 , pp. 345-418
    • Féraille, E.1    Doucet, A.2
  • 90
    • 0242300262 scopus 로고    scopus 로고
    • Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse
    • Tamamaki N., et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 2003, 467:60-79.
    • (2003) J. Comp. Neurol. , vol.467 , pp. 60-79
    • Tamamaki, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.