메뉴 건너뛰기




Volumn 21, Issue 11, 2013, Pages 2277-2289

Active-set newton algorithm for overcomplete non-negative representations of audio

Author keywords

Acoustic signal analysis; audio source separation; convex optimization; Newton algorithm; non negative matrix factorization; sparse coding; sparse representation; supervised source separation

Indexed keywords

ACOUSTIC SIGNAL ANALYSIS; AUDIO SOURCE SEPARATION; NEWTON ALGORITHM; NONNEGATIVE MATRIX FACTORIZATION; SPARSE CODING; SPARSE REPRESENTATION; SUPERVISED SOURCE SEPARATIONS;

EID: 84886818613     PISSN: 15587916     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASL.2013.2263144     Document Type: Article
Times cited : (64)

References (50)
  • 1
    • 18444370569 scopus 로고    scopus 로고
    • Nonnegative features of spectro-temporal sounds for classification
    • DOI 10.1016/j.patrec.2004.11.026, PII S016786550400368X
    • Y.-C. Cho and S. Choi, " Nonnegative features of spectro-temporal sounds for classification," Pattern Recognit. Lett., vol. 26, no. 9, pp. 1327-1336, 2005 (Pubitemid 40644695)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.9 , pp. 1327-1336
    • Cho, Y.-C.1    Choi, S.2
  • 2
    • 76949083547 scopus 로고    scopus 로고
    • Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription
    • Mar.
    • N. Bertin, R. Badeau, and E. Vincent, " Enforcing harmonicity and smoothness in Bayesian non-negative matrix factorization applied to polyphonic music transcription,"IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 3, pp. 538-549, Mar. 2010
    • (2010) IEEE Trans. Audio, Speech, Lang. Process , vol.18 , Issue.3 , pp. 538-549
    • Bertin, N.1    Badeau, R.2    Vincent, E.3
  • 3
    • 79960657803 scopus 로고    scopus 로고
    • Exemplar-based sparse representations for noise robust automatic speech recognition
    • Sep.
    • J. Gemmeke, T. Virtanen, and A. Hurmalainen, " Exemplar-based sparse representations for noise robust automatic speech recognition," IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 7, pp. 2067-2080, Sep. 2011
    • (2011) IEEE Trans. Audio, Speech, Lang. Process , vol.19 , Issue.7 , pp. 2067-2080
    • Gemmeke, J.1    Virtanen, T.2    Hurmalainen, A.3
  • 4
    • 50249152311 scopus 로고    scopus 로고
    • Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria
    • Mar
    • T. Virtanen, "Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria," IEEE Trans. Audio, Speech, Language Process., vol. 15, no. 3, pp. 1066-1074, Mar. 2007
    • (2007) IEEE Trans. Audio, Speech, Language Process , vol.15 , Issue.3 , pp. 1066-1074
    • Virtanen, T.1
  • 5
    • 79959818117 scopus 로고    scopus 로고
    • Non-negative matrix factorization based compensation of music for automatic speech recognition
    • Tokyo, Jap an
    • B. Raj, T. Virtanen, S. Chaudhuri, and R. Singh, " Non-negative matrix factorization based compensation of music for automatic speech recognition," in Proc. Interspeech ?10, Tokyo, Jap an, 2010
    • (2010) Proc. Interspeech ?10
    • Raj, B.1    Virtanen, T.2    Chaudhuri, S.3    Singh, R.4
  • 6
    • 33745219863 scopus 로고    scopus 로고
    • Bandwidth expansion of narrowband speech using non-negative matrix factorization
    • Lisbon, Portugal
    • D. Bansal, B. Raj, and P. Smaragdis, " Bandwidth expansion of narrowband speech using non-negative matrix factorization," in Proc. 9th Eur. Conf. Speech Commun. Technol., Lisbon, P ortugal, 2003
    • (2003) Proc. 9th Eur. Conf. Speech Commun. Technol
    • Bansal, D.1    Raj, B.2    Smaragdis, P.3
  • 7
    • 76949094445 scopus 로고    scopus 로고
    • Multichannel nonnegativematrix factorization in convolutive mixtures for audio source separation
    • Mar
    • A. Ozerov, "Multichannel nonnegativematrix factorization in convolutive mixtures for audio source separation," IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 3 , pp. 550-563, Mar. 2010
    • (2010) IEEE Trans. Audio, Speech, Lang. Process , vol.18 , Issue.3 , pp. 550-563
    • Ozerov, A.1
  • 8
    • 77952744810 scopus 로고    scopus 로고
    • Sparse representations in audio & music: From coding to source separation
    • Jun
    • M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E. Davies, "Sparse representations in audio & music: From coding to source separation," Proc. IEEE, vol. 98, no. 6, pp. 995-1005, Jun. 2009
    • (2009) Proc.IEEE , vol.98 , Issue.6 , pp. 995-1005
    • Plumbley, M.D.1    Blumensath, T.2    Daudet, L.3    Gribonval, R.4    Davies, M.E.5
  • 9
    • 84866031901 scopus 로고    scopus 로고
    • Object-based audio coding using nonnegative matrix factorization for the spectrogram representation
    • London, U.K
    • J. Nikunen and T. Virtanen, " Object-based audio coding using nonnegative matrix factorization for the spectrogram representation," in Proc. 128th Audio Eng. Soc. Conv., London, U.K., 2010
    • (2010) Proc. 128th Audio Eng. Soc. Conv
    • Nikunen, J.1    Virtanen, T.2
  • 10
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negativematrix factorization
    • Denver, CO, USA
    • ] D. D. Lee and H. S. Seung, " Algorithms for non-negativematrix factorization," in Proc. Neural Inf. Process. Syst., Denver, CO, USA, 2000, pp. 556-562
    • (2000) Proc. Neural Inf. Process. Syst , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 16
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the Itakura-Saito divergence with application to music analysis
    • ] N. B. C. Févotte and J.-L. Durrieu, " Nonnegative matrix factorization with the Itakura-Saito divergence with application to music analysis," Neural Comput., vol. 21, no. 3, 2009
    • (2009) Neural Comput , vol.21 , Issue.3
    • Févotte, N.B.C.1    Durrieu, J.-L.2
  • 18
    • 84866042020 scopus 로고    scopus 로고
    • Optimization and parallelization of monaural source separation algorithms in the openBliSSART toolkit
    • F. Weninger and B. Schuller, " Optimization and parallelization of monaural source separation algorithms in the openBliSSART toolkit," J. Signal Process. Syst., vol. 69, no. 3, pp. 267-277, 2012
    • (2012) J. Signal Process. Syst , vol.69 , Issue.3 , pp. 267-277
    • Weninger, F.1    Schuller, B.2
  • 19
    • 33845602080 scopus 로고    scopus 로고
    • An interior point Newton-like method for non-negative least-squares problems with degenerate solution
    • DOI 10.1002/nla.502
    • S. Bellavia, M. Macconi, and B. Morini, " An interior point Newtonlike method for non-negative least-squares problems with degenerate solution," Numer. Linear Algebra With Applicat., vol. 13, no. 10, pp. 825-846, 2006 (Pubitemid 44951700)
    • (2006) Numerical Linear Algebra with Applications , vol.13 , Issue.10 , pp. 825-846
    • Bellavia, S.1    Macconi, M.2    Morini, B.3
  • 20
    • 56449106635 scopus 로고    scopus 로고
    • Fast Newton-type methods for the least squares nonnegative matrix approximation problem
    • Minneapolis, MN, USA
    • D. Kim, S. Sra, and I. S. Dhillon, " Fast Newton-type methods for the least squares nonnegative matrix approximation problem," in Proc. SIAM Conf. Data Mining, Minnea polis, MN, USA, 2007
    • (2007) Proc. SIAM Conf. Data Mining
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 21
    • 34247173538 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with constrained second-order optimization
    • DOI 10.1016/j.sigpro.2007.01.024, PII S0165168407000527
    • R. Zdunek and A. Cichocki, " Nonnegative matrix factorization with constrained second-order optimization," Signal Process., vol. 87, no. 8, pp. 1904-1916, 2007 (Pubitemid 46590394)
    • (2007) Signal Processing , vol.87 , Issue.8 , pp. 1904-1916
    • Zdunek, R.1    Cichocki, A.2
  • 22
    • 80052651461 scopus 로고    scopus 로고
    • Fast coordinate descent methods with variable selection for non-negative matrix factorization
    • San Diego, CA, USA
    • C.-J. Hsieh and I. S. Dhillon, " Fast coordinate descent methods with variable selection for non-negative matrix factorization," in Proc. 17th ACMSIGKDD Int. Conf. Knowl. Discov. DataMining, San Diego, CA, USA, 2011
    • (2011) Proc. 17th ACMSIGKDD Int. Conf. Knowl. Discov. DataMining
    • Hsieh, C.-J.1    Dhillon, I.S.2
  • 23
    • 84890520954 scopus 로고    scopus 로고
    • A diagonalized Newton algorithm for non-negative sparse coding
    • Vancouver, BC, Canada accepted for publication
    • H. Van hamme, "A diagonalized Newton algorithm for non-negative sparse coding " in Proc. IEEE Int. Conf. Audio, Speech, Signal Process., Vancouver, BC, Canada, 2013, accepted for publication
    • (2013) Proc. IEEE Int. Conf. Audio, Speech, Signal Process
    • Van Hamme, H.1
  • 24
    • 84863012243 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization: An activeset-like method and comparisons
    • J. Kim and H. Park, "Fast nonnegative matrix factorization: An activeset-like method and comparisons," SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261-3281, 2011
    • (2011) SIAM J. Sci. Comput , vol.33 , Issue.6 , pp. 3261-3281
    • Kim, J.1    Park, H.2
  • 25
    • 47749123490 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems
    • article ID 939567
    • R. Zdunek and A. Cichocki, " Fast nonnegative matrix factorization algorithms using projected gradient approaches for large-scale problems," Comput. Intell. Neurosci., 2008, article ID 939567
    • (2008) Comput. Intell. Neurosci
    • Zdunek, R.1    Cichocki, A.2
  • 27
    • 69949164527 scopus 로고    scopus 로고
    • Iterative hard thresholding for compressed sensing
    • T. Blumensath andM. E. Davies, "Iterative hard thresholding for compressed sensing " Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265-274, 2009
    • (2009) Appl. Comput. Harmon. Anal , vol.27 , Issue.3 , pp. 265-274
    • Blumensath, T.1    Davies, M.E.2
  • 28
    • 84877901629 scopus 로고    scopus 로고
    • Compressed sensing with nonlinear observations
    • Jun.
    • ] T. Blumensath, "Compressed sensing with nonlinear observations " IEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3466-3474, Jun. 2013
    • (2013) IEEE Trans. Inf. Theory , vol.59 , Issue.6 , pp. 3466-3474
    • Blumensath, T.1
  • 29
    • 84876255064 scopus 로고    scopus 로고
    • Greedy sparsity-constrained optimization
    • S. Bahmani, B. Raj, and P. Boufounos, " Greedy sparsity-constrained optimization," J. Mach. Learn. Res., vol. 14, no. 3, pp. 807-841, 2013
    • (2013) J. Mach. Learn. Res , vol.14 , Issue.3 , pp. 807-841
    • Bahmani, S.1    Raj, B.2    Boufounos, P.3
  • 30
    • 0027842081 scopus 로고
    • Matching pursuitswith time-frequency dictionaries
    • Dec
    • S. Mallat and Z. Zhang, " Matching pursuitswith time-frequency dictionaries," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993
    • (1993) IEEE Trans. Signal Process , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 31
    • 0027814133 scopus 로고
    • Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
    • Y. Pati, R. Rezaiifar, and P. Krishnaprasad, " Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," in Proc. Asilomar Conf. Signals, Syst. Comput., 1993
    • (1993) Proc. Asilomar Conf. Signals, Syst. Comput
    • Pati, Y.1    Rezaiifar, R.2    Krishnaprasad, P.3
  • 32
    • 78650162049 scopus 로고    scopus 로고
    • Cosamp: Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell and J. A. Tropp, " Cosamp: Iterative signal recovery from incomplete and inaccurate samples," Commun. ACM, vol. 53, no. 12, pp. 301-321, 2010
    • (2010) Commun ACM , vol.53 , Issue.12 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 33
    • 84886134666 scopus 로고    scopus 로고
    • Extraction of speech from mixture signals
    • T.Virtanen, R. Singh, and B. Raj, Eds. New York, NY, USA Wiley
    • P. Smaragdis, "Extraction of speech from mixture signals," in Techniques for Noise Robustness in Automatic Speech Recognition, T.Virtanen, R. Singh, and B. Raj, Eds. New York, NY, USA:Wiley, 2012, pp. 87-108
    • (2012) Techniques for Noise Robustness in Automatic Speech Recognition , pp. 87-108
    • Smaragdis, P.1
  • 34
    • 44949110218 scopus 로고    scopus 로고
    • Single-channel speech separation using sparse non-negative matrix factorization
    • Pittsburgh, PA, USA
    • M. N. Schmidt and R. K. Olsson, " Single-channel speech separation using sparse non-negative matrix factorization," in Proc. Int. Conf. Spoken Lang. Process., Pittsburgh, PA, USA, 2006
    • (2006) Proc. Int. Conf. Spoken Lang. Process
    • Schmidt, M.N.1    Olsson, R.K.2
  • 38
    • 84858719009 scopus 로고    scopus 로고
    • A sparse non-parametric approach for single channel separation of known sounds
    • Vancouver, BC, Canada
    • P. Smaragdis, M. Shashanka, and B. Raj, " A sparse non-parametric approach for single channel separation of known sounds," in Proc. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2009
    • (2009) Proc. Neural Inf. Process. Syst.
    • Smaragdis, P.1    Shashanka, M.2    Raj, B.3
  • 39
    • 51449099910 scopus 로고    scopus 로고
    • Harmonic and inharmonic nonnegative matrix factorization for polyphonic pitch transcription
    • Las Vegas, NV, USA
    • E. Vincent, N. Bertin, and R. Badeau, " Harmonic and inharmonic nonnegative matrix factorization for polyphonic pitch transcription," in Proc. IEEE Int. Conf. Audio, Speech, Signal Process., Las Vegas, NV, USA, 2008, pp. 109-112
    • (2008) Proc. IEEE Int. Conf. Audio, Speech, Signal Process , pp. 109-112
    • Vincent, E.1    Bertin, N.2    Badeau, R.3
  • 40
    • 67650927380 scopus 로고    scopus 로고
    • Bayesian inference for nonnegativematrix factorisation models
    • article ID 785152
    • A. T. Cemgil, "Bayesian inference for nonnegativematrix factorisation models " Comput. Intell. Neurosci., 2009, article ID 785152
    • (2009) Comput. Intell. Neurosci
    • Cemgil, A.T.1
  • 41
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki and A.-H. Phan, " Fast local algorithms for large scale nonnegative matrix and tensor factorizations," IEICE Trans. Fundam. Electron., Commun., Comput. Sci., vol. E92-A, no. 3, pp. 708-721, 2009
    • (2009) IEICE Trans. Fundam. Electron., Commun., Comput. Sci. , vol.E92-A , Issue.3 , pp. 708-721
    • Cichocki, A.1    Phan, A.-H.2
  • 43
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints " J. Mach. Learn. Res., vol. 5, pp. 1457-1469, 2004
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 44
    • 33750368310 scopus 로고    scopus 로고
    • An audio-visual corpus for speech perception and automatic speech recognition
    • DOI 10.1121/1.2229005
    • M. P. Cooke, J. Barker, S. P. Cunningham, and X. Shao, "An audiovisual corpus for speech perception and automatic speech recognition," J. Acoust. Soc. Amer., vol. 120, no. 5, pp. 2421-2424, 2006 (Pubitemid 44631681)
    • (2006) Journal of the Acoustical Society of America , vol.120 , Issue.5 , pp. 2421-2424
    • Cooke, M.1    Barker, J.2    Cunningham, S.3    Shao, X.4
  • 45
    • 69249202377 scopus 로고    scopus 로고
    • Monaural speech separation and recognition challenge
    • M. Cooke, J. R. Hershey, and S. J. Rennie, " Monaural speech separation and recognition challenge," Comput. Speech Lang., vol. 24, no. 1, pp. 1-15, 2010
    • (2010) Comput. Speech Lang , vol.24 , Issue.1 , pp. 1-15
    • Cooke, M.1    Hershey, J.R.2    Rennie, S.J.3
  • 46
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct
    • ] D. D. Lee and H. S. Seung, " Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, pp. 788-791, Oct. 1999
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 47
    • 84976832431 scopus 로고
    • Methods to speed up error back-propagation learning algorithm
    • D. Sarkar, "Methods to speed up error back-propagation learning algorithm " ACM Comput. Surv., vol. 27, no. 4, pp. 519-544, 1995
    • (1995) ACM Comput. Surv , vol.27 , Issue.4 , pp. 519-544
    • Sarkar, D.1
  • 48
    • 84883055227 scopus 로고    scopus 로고
    • Factorial models for noise robust speech recognition
    • T. Virtanen, R. Singh, and B. Raj, Eds. New York, NY, USA Wiley
    • J. R. Hershey, S. J. Rennie, and J. Le Roux, " Factorial models for noise robust speech recognition," in Techniques for Noise Robustness in Automatic Speech Recognition, T. Virtanen, R. Singh, and B. Raj, Eds. New York, NY, USA: Wiley, 2012, pp. 311-345
    • (2012) Techniques for Noise Robustness in Automatic Speech Recognition , pp. 311-345
    • Hershey, J.R.1    Rennie, S.J.2    Le Roux, J.3
  • 50
    • 84878567715 scopus 로고    scopus 로고
    • Advances in noise robust digit recognition using hybrid exemplar-based techniques
    • Portland, OR, USA
    • J. F. Gemmeke and H. Van hamme, " Advances in noise robust digit recognition using hybrid exemplar-based techniques," in Proc. Interspeech, Portland, OR, USA, 2012.
    • (2012) Proc. Interspeech
    • Gemmeke, J.F.1    Van Hamme, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.