메뉴 건너뛰기




Volumn , Issue , 2007, Pages 343-354

Fast newton-type methods for the least squares nonnegative matrix approximation problem

Author keywords

Active sets; Factorization; Least squares; Nonnegative matrix approximation; Projected Newton methods

Indexed keywords

APPROXIMATION ALGORITHMS; DATA MINING; FACTORIZATION; GRADIENT METHODS; HEURISTIC METHODS; IMAGE PROCESSING; MATRIX ALGEBRA; NEWTON-RAPHSON METHOD; NUMERICAL METHODS;

EID: 56449106635     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972771.31     Document Type: Conference Paper
Times cited : (112)

References (25)
  • 2
    • 0000377218 scopus 로고
    • Projected Newton Methods for Optimization Problems with Simple Constraints
    • D. P. Bertsekas. Projected Newton Methods for Optimization Problems with Simple Constraints. SIAM Journal on Control and Optimization, 20(2):221-246, 1982.
    • (1982) SIAM Journal on Control and Optimization , vol.20 , Issue.2 , pp. 221-246
    • Bertsekas, D.P.1
  • 3
    • 0001115369 scopus 로고
    • On Iterative Algorithms for Linear Least Squares Problems with Bound constraints
    • M. Bierlaire, Philipe L. Toint, and D. Tuyttens. On Iterative Algorithms for Linear Least Squares Problems with Bound constraints. Linear Algebra and its Applications, 143:111-143, 1991.
    • (1991) Linear Algebra and its Applications , vol.143 , pp. 111-143
    • Bierlaire, M.1    Toint, P.L.2    Tuyttens, D.3
  • 5
    • 85153976510 scopus 로고    scopus 로고
    • A Fast Non-negativity-constrained Least Squares Algorithm
    • 11 5
    • R. Bro and S. D. Jong. A Fast Non-negativity-constrained Least Squares Algorithm. Journal of Chemometrics, 11 (5):393-40 1, 1997.
    • (1997) Journal of Chemometrics , vol.393 -40 , pp. 1
    • Bro, R.1    Jong, S.D.2
  • 7
    • 70449095918 scopus 로고    scopus 로고
    • A. Cichocki and R. Zdunek. NMFLAB - MATLAB Toolbox for Non-Negative Matrix Factorization. Online, 2006.
    • A. Cichocki and R. Zdunek. NMFLAB - MATLAB Toolbox for Non-Negative Matrix Factorization. Online, 2006.
  • 8
    • 0014825610 scopus 로고
    • A New Approach to Variable Metric Algorithms
    • R. Fletcher. A New Approach to Variable Metric Algorithms. Computer Journal, pages 317-322, 1970.
    • (1970) Computer Journal , pp. 317-322
    • Fletcher, R.1
  • 9
    • 84966251980 scopus 로고
    • Variable-metric Methods Derived by Variational Means
    • D. Goldfarb. A Family of Variable-metric Methods Derived by Variational Means. Mathematics of Computation, 24(109):23-26, 1970.
    • (1970) Mathematics of Computation , vol.24 , Issue.109 , pp. 23-26
    • Goldfarb, D.1    Family of, A.2
  • 10
    • 34547433480 scopus 로고    scopus 로고
    • Accelerating The LeeSeung Algorithm for Nonnegative Matrix Factorization
    • Technical Report TR-05-02, Rice University
    • E. F Gonzalez and Y. Zhang. Accelerating The LeeSeung Algorithm for Nonnegative Matrix Factorization. Technical Report TR-05-02, Rice University, 2005.
    • (2005)
    • Gonzalez, E.F.1    Zhang, Y.2
  • 11
    • 0033904057 scopus 로고    scopus 로고
    • On The Convergence of The Block Nonlinear Gauss-Seidel Method under Convex Constraints
    • L. Grippo and M. Sciandrone. On The Convergence of The Block Nonlinear Gauss-Seidel Method under Convex Constraints. Operations Research Letters, 26: 127-136, 2000.
    • (2000) Operations Research Letters , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 12
    • 58849114135 scopus 로고    scopus 로고
    • A New Projected Quasi-Newton Approach for the Non-negative Least Squares Problem
    • Technical Report TR-06-54, Computer Sciences, The Univ. of Texas at Austin
    • D. Kim, S. Sra, and I. S. Dhillon. A New Projected Quasi-Newton Approach for the Non-negative Least Squares Problem. Technical Report TR-06-54, Computer Sciences, The Univ. of Texas at Austin, 2006.
    • (2006)
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning The Parts of Objects by Nonnegative Matrix Factorization
    • D. D. Lee and H. S. Seung. Learning The Parts of Objects by Nonnegative Matrix Factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 16
    • 33748654502 scopus 로고    scopus 로고
    • Projected Gradient Methods for Non-negative Matrix Factorization
    • Technical Report ISSTECH-95-013, National Taiwan University
    • C. Lin. Projected Gradient Methods for Non-negative Matrix Factorization. Technical Report ISSTECH-95-013, National Taiwan University, 2005.
    • (2005)
    • Lin, C.1
  • 17
    • 23744469721 scopus 로고    scopus 로고
    • Interior-Point Gradient Method for Large-Scale Totally Nonnegative Least Squares Problems
    • M. Merritt and Y. Zhang. Interior-Point Gradient Method for Large-Scale Totally Nonnegative Least Squares Problems. Journal of Optimization Theory and Applications, 126(1): 191-202, 2005.
    • (2005) Journal of Optimization Theory and Applications , vol.126 , Issue.1 , pp. 191-202
    • Merritt, M.1    Zhang, Y.2
  • 18
    • 0030954231 scopus 로고    scopus 로고
    • Least-squares Formulation of Robust Non-negative Factor Analysis
    • P. Paatero. Least-squares Formulation of Robust Non-negative Factor Analysis. Chemometrics and Intelligent Laboratory Systems, 37:23-35, 1997.
    • (1997) Chemometrics and Intelligent Laboratory Systems , vol.37 , pp. 23-35
    • Paatero, P.1
  • 19
    • 0033275630 scopus 로고    scopus 로고
    • The Multilmear Engine-A Table-driven Least Squares Program for Solving Multilinear Problems, Including The N-way Parallel Factor Analysis Model
    • P. Paatero. The Multilmear Engine-A Table-driven Least Squares Program for Solving Multilinear Problems, Including The N-way Parallel Factor Analysis Model. Journal of Computational and Graphical Statistics, 8(4):854-888, 1999.
    • (1999) Journal of Computational and Graphical Statistics , vol.8 , Issue.4 , pp. 854-888
    • Paatero, P.1
  • 20
    • 0028561099 scopus 로고
    • Positive Matrix Factorization: A Nonnegative Factor Model with Optimal Utilization of Error Estimates of Data Values
    • P. Paatero and U. Tapper. Positive Matrix Factorization: A Nonnegative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 5 (111-126), 1994.
    • (1994) Environmetrics , vol.5 , Issue.111-126
    • Paatero, P.1    Tapper, U.2
  • 22
    • 84968497764 scopus 로고
    • Conditioning of Quasi-Newton Methods for Function Minimization
    • D. F Shanno. Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computation, 24(111):647-656, 1970.
    • (1970) Mathematics of Computation , vol.24 , Issue.111 , pp. 647-656
    • Shanno, D.F.1
  • 23
    • 38549127892 scopus 로고    scopus 로고
    • Nonnegative Matrix Approximation: Algorithms and Applications
    • Technical Report Tr-06-27, Computer Sciences, University of Texas at Austin
    • S. Sra and I. S. Dhillon. Nonnegative Matrix Approximation: Algorithms and Applications. Technical Report Tr-06-27, Computer Sciences, University of Texas at Austin, 2006.
    • (2006)
    • Sra, S.1    Dhillon, I.S.2
  • 24
    • 1542347778 scopus 로고    scopus 로고
    • Document Clustering Based on Nonnegative Matrix Factorization
    • W. Xu, X. Liu, and Y. Gong. Document Clustering Based on Nonnegative Matrix Factorization. In SIGIR'03, pages 267-273, 2003.
    • (2003) SIGIR'03 , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.