메뉴 건너뛰기




Volumn 47, Issue 8, 2010, Pages 1407-1414

A classification method for class-imbalanced data and its application on bioinformatics

Author keywords

Bioinformatics; Class imbalance; Classification; Mining SNP from EST; NcRNA identification

Indexed keywords

ADABOOST; CLASS IMBALANCE; CLASSIFICATION; CLASSIFICATION METHODS; DATA SETS; DIFFERENT MECHANISMS; ENSEMBLE LEARNING; IMBALANCED DATA; MICRORNAS; NCRNA IDENTIFICATION; SOFTWARE PROGRAM; TRAINING PHASE; TRAINING SETS; WEAK CLASSIFIERS;

EID: 77956460761     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (20)

References (19)
  • 1
    • 77956458333 scopus 로고    scopus 로고
    • A study of feature selection for text categorization on imbalanced data
    • in Chinese
    • Xu Yan, Li Jintao, Wang Bin, et al. A study of feature selection for text categorization on imbalanced data [J]. Journal of Computer Research and Development, 2006, 43(Suppl): 58-62 (in Chinese)
    • (2006) Journal of Computer Research and Development , vol.43 , Issue.SUPPL. , pp. 58-62
    • Xu, Y.1    Li, J.2    Wang, B.3
  • 3
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M S, Holte R C S, Matwin S S. Machine learning for the detection of oil spills in satellite radar images [J]. Machine Learning, 1998, 30(2): 195-215.
    • (1998) Machine Learning , vol.30 , Issue.2 , pp. 195-215
    • Kubat, M.S.1    Holte, R.C.S.2    Matwin, S.S.3
  • 4
    • 12244261390 scopus 로고    scopus 로고
    • "In vivo" spam filtering: A challenge problem for data mining
    • Fawcett T. "In vivo" spam filtering: A challenge problem for data mining [J]. ACM SIGKDD Explorations, 2003, 5(2): 140-148.
    • (2003) ACM SIGKDD Explorations , vol.5 , Issue.2 , pp. 140-148
    • Fawcett, T.1
  • 5
    • 33750416896 scopus 로고    scopus 로고
    • PSol: A positive sample only learning algorithm for finding non-coding RNA genes
    • Wang Chunlin, Ding Chris, Meraz R F, et al. PSol: A positive sample only learning algorithm for finding non-coding RNA genes [J]. Bioinformatics, 2006, 22(21): 2590-2596.
    • (2006) Bioinformatics , vol.22 , Issue.21 , pp. 2590-2596
    • Wang, C.1    Ding, C.2    Meraz, R.F.3
  • 6
    • 34547596338 scopus 로고    scopus 로고
    • MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features
    • Jiang P, Wu H, Wang W, et al. MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features [J]. Nucleic Acids Research, 2007, 35: W339-W344.
    • (2007) Nucleic Acids Research , vol.35
    • Jiang, P.1    Wu, H.2    Wang, W.3
  • 7
    • 0032706623 scopus 로고    scopus 로고
    • A general approach to single-nucleotide polymorphism discovery
    • Marth G T, et al. A general approach to single-nucleotide polymorphism discovery [J]. Nature Genetics, 1999, 23(4): 452-456.
    • (1999) Nature Genetics , vol.23 , Issue.4 , pp. 452-456
    • Marth, G.T.1
  • 8
    • 33747444190 scopus 로고    scopus 로고
    • Model-free gene selection method by considering unbalanced samples
    • in Chinese
    • Li Jianzhong, Yang Kun, Gao Hong, et al. Model-free gene selection method by considering unbalanced samples [J]. Journal of Software, 2006, 17(7): 1485-1493 (in Chinese)
    • (2006) Journal of Software , vol.17 , Issue.7 , pp. 1485-1493
    • Li, J.1    Yang, K.2    Gao, H.3
  • 10
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista G E, Prati R C, Monard M C. A study of the behavior of several methods for balancing machine learning training data [J]. ACM SIGKDD Explorations, 2004, 6(1): 20-29.
    • (2004) ACM SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.1    Prati, R.C.2    Monard, M.C.3
  • 11
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
    • Guo H, Viktor H L. Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach [J]. ACM SIGKDD Explorations, 2004, 6(1): 30-39.
    • (2004) ACM SIGKDD Explorations , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 12
    • 33749245586 scopus 로고    scopus 로고
    • Cost-sensitive learning by cost-proportionate example weighting
    • Piscataway, NJ: IEEE
    • Zadrozny B, Langford J, Abe N. Cost-sensitive learning by cost-proportionate example weighting [C] //Proc of the 3rd Int Conf on Data Mining. Piscataway, NJ: IEEE, 2003: 435-442.
    • (2003) Proc of the 3rd Int Conf on Data Mining , pp. 435-442
    • Zadrozny, B.1    Langford, J.2    Abe, N.3
  • 14
    • 77956472993 scopus 로고    scopus 로고
    • A cascade-based classification method for class-imbalanced data
    • in Chinese
    • Liu Xuying, Wu Jianxin, Zhou Zhihua. A cascade-based classification method for class-imbalanced data [J]. Journal of Nanjing University: Natural Sciences, 2006, 42(2): 148-155 (in Chinese)
    • (2006) Journal of Nanjing University: Natural Sciences , vol.42 , Issue.2 , pp. 148-155
    • Liu, X.1    Wu, J.2    Zhou, Z.3
  • 15
    • 38349072207 scopus 로고    scopus 로고
    • A classification method for imbalance data set based on hybrid strategy
    • in Chinese
    • Li Peng, Wang Xiaolong, Liu Yuanchao, et al. A classification method for imbalance data set based on hybrid strategy [J]. Acta Electronica Sinica, 2007, 35(11): 2161-2165 (in Chinese)
    • (2007) Acta Electronica Sinica , vol.35 , Issue.11 , pp. 2161-2165
    • Li, P.1    Wang, X.2    Liu, Y.3
  • 16
    • 30344447264 scopus 로고    scopus 로고
    • Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine
    • Xue C, Li F, He T, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine [J]. BMC Bioinformatics, 2005, 6: 310.
    • (2005) BMC Bioinformatics , vol.6 , pp. 310
    • Xue, C.1    Li, F.2    He, T.3
  • 17
    • 38449092636 scopus 로고    scopus 로고
    • snoReport: Computational identification of snoRNAs with unknown targets
    • Hertel J, Hofacker I L, Stadler P F. snoReport: Computational identification of snoRNAs with unknown targets [J]. Bioinformatics, 2008, 24(2): 158-164.
    • (2008) Bioinformatics , vol.24 , Issue.2 , pp. 158-164
    • Hertel, J.1    Hofacker, I.L.2    Stadler, P.F.3
  • 18
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Cambridge: MIT Press
    • Krogh A, et al. Neural network ensembles, cross validation, and active learning [G] //Advances in Neural Information Processing Systems 7. Cambridge: MIT Press, 1995: 231-238.
    • (1995) Advances in Neural Information Processing Systems 7 , pp. 231-238
    • Krogh, A.1
  • 19
    • 7244250182 scopus 로고    scopus 로고
    • Data mining in bioinformatics using Weka
    • Frank E, et al. Data mining in bioinformatics using Weka [J]. Bioinformatics, 2004, 20(15): 2479-2481.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2479-2481
    • Frank, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.