메뉴 건너뛰기




Volumn 39, Issue 4, 2009, Pages 423-440

Mining extremely small data sets with application to software reuse

Author keywords

Data mining; Ensemble learning; Extremely small data set; Machine learning; Random forest; Software reuse; Twice learning

Indexed keywords

ENSEMBLE LEARNING; EXTREMELY SMALL DATA SET; MACHINE LEARNING; RANDOM FOREST; SOFTWARE REUSE; TWICE LEARNING;

EID: 65349114774     PISSN: 00380644     EISSN: 1097024X     Source Type: Journal    
DOI: 10.1002/spe.905     Document Type: Article
Times cited : (15)

References (28)
  • 1
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for science: State of the art and future prospects
    • Mjolsness E, DeCoste D. Machine learning for science: State of the art and future prospects. Science 2001; 293(5537):2051-2055.
    • (2001) Science , vol.293 , Issue.5537 , pp. 2051-2055
    • Mjolsness, E.1    DeCoste, D.2
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001; 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 70350346030 scopus 로고    scopus 로고
    • Ensemble learning
    • Li SZ ed, Springer: Berlin
    • Zhou Z-H. Ensemble learning. Encyclopedia of Biometrics, Li SZ (ed.). Springer: Berlin, 2008.
    • (2008) Encyclopedia of Biometrics
    • Zhou, Z.-H.1
  • 10
    • 33745784156 scopus 로고    scopus 로고
    • Generation of Comprehensible Hypotheses from Gene Expression Data
    • Springer: Berlin
    • Jiang Y, Li M, Zhou Z-H. Generation of Comprehensible Hypotheses from Gene Expression Data (Lecture Notes in Bioinformatics, vol. 3916). Springer: Berlin, 2006; 116-123.
    • (2006) Lecture Notes in Bioinformatics , vol.3916 , pp. 116-123
    • Jiang, Y.1    Li, M.2    Zhou, Z.-H.3
  • 14
    • 0038030864 scopus 로고    scopus 로고
    • Extracting symbolic rules from trained neural network ensembles
    • Zhou Z-H, Jiang Y, Chen S-F. Extracting symbolic rules from trained neural network ensembles. AI Communications 2003; 16(1):3-15.
    • (2003) AI Communications , vol.16 , Issue.1 , pp. 3-15
    • Zhou, Z.-H.1    Jiang, Y.2    Chen, S.-F.3
  • 16
    • 0004000055 scopus 로고
    • No free lunch theorems for search
    • Technical Report, Santa Fe Institute, Santa Fe, NM, February
    • Wolpert DH, Macready WG. No free lunch theorems for search. Technical Report, Santa Fe Institute, Santa Fe, NM, February 1995.
    • (1995)
    • Wolpert, D.H.1    Macready, W.G.2
  • 18
    • 0003408496 scopus 로고    scopus 로고
    • Available from:, Department of Information and Computer Science, University of California, Irvine, CA
    • Blake C, Keogh E, Merz CJ. UCI repository of machine learning databases. Available from: http://www.ics.uci.edu/? mlearn/MLRepository.html, Department of Information and Computer Science, University of California, Irvine, CA, 1998.
    • (1998) UCI repository of machine learning databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 23
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • Krishnaiah PR, Kanal LN eds, North-Holland: Amsterdam
    • Jain AK, Chandrasekaran B. Dimensionality and sample size considerations in pattern recognition practice. Handbook of Statistics, vol. 2, Krishnaiah PR, Kanal LN (eds.). North-Holland: Amsterdam, 1987; 835-855.
    • (1987) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, B.2
  • 24
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • Raudys SJ, Jain AK. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991; 13(3):252-264.
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.