-
1
-
-
79955443392
-
Improving music genre classification using automatically induced harmony rules
-
A. Anglade, E. Benetos, M. Mauch, and S. Dixon. Improving music genre classification using automatically induced harmony rules. Journal of New Music Research, 39:349-361, 2010.
-
(2010)
Journal of New Music Research
, vol.39
, pp. 349-361
-
-
Anglade, A.1
Benetos, E.2
Mauch, M.3
Dixon, S.4
-
2
-
-
77953139735
-
Music playlist generation by assimilating gmms into soms
-
W. Balkema and F. van der Heijden. Music playlist generation by assimilating gmms into soms. Pattern Recognition Letters, 31(11):1396-1402, 2010.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.11
, pp. 1396-1402
-
-
Balkema, W.1
Van Der Heijden, F.2
-
3
-
-
33846842442
-
Music genre classification using MIDI and audio features
-
January
-
Z. Cataltepe, Y. Yaslan, and A. Sonmez. Music genre classification using MIDI and audio features. EURASIP J. Appl. Signal Process., 2007:150-150, January 2007.
-
(2007)
EURASIP J. Appl. Signal Process
, vol.2007
, pp. 150-150
-
-
Cataltepe, Z.1
Yaslan, Y.2
Sonmez, A.3
-
5
-
-
70349129938
-
Improving music genre classification using collaborative tagging data
-
L. Chen, P. Wright, and W. Nejdl. Improving music genre classification using collaborative tagging data. In Web Search and Data Mining, pages 84-93, 2009.
-
(2009)
Web Search and Data Mining
, pp. 84-93
-
-
Chen, L.1
Wright, P.2
Nejdl, W.3
-
6
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871-1874, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
7
-
-
84873443934
-
Playlist generation using start and end songs
-
J. P. Bello, E. Chew, and D. Turnbull, editors
-
A. Flexer, D. Schnitzer, M. Gasser, and G. Widmer. Playlist generation using start and end songs. In J. P. Bello, E. Chew, and D. Turnbull, editors, ISMIR, pages 173-178, 2008.
-
(2008)
ISMIR
, pp. 173-178
-
-
Flexer, A.1
Schnitzer, D.2
Gasser, M.3
Widmer, G.4
-
9
-
-
84873546054
-
A benchmark dataset for audio classification and clustering
-
H. Homburg, I. Mierswa, B. Möller, K. Morik, and M. Wurst. A benchmark dataset for audio classification and clustering. In ISMIR, pages 528-531, 2005.
-
(2005)
ISMIR
, pp. 528-531
-
-
Homburg, H.1
Mierswa, I.2
Möller, B.3
Morik, K.4
Wurst, M.5
-
10
-
-
0019177563
-
Experiments in syllable-based recognition of continuous speech
-
M. J. Hunt, M. Lennig, and P. Mermelstein. Experiments in syllable-based recognition of continuous speech. In International Conference on Acoustics, Speech, and Signal Processing, 1980.
-
(1980)
International Conference on Acoustics, Speech, and Signal Processing
-
-
Hunt, M.J.1
Lennig, M.2
Mermelstein, P.3
-
12
-
-
78751660647
-
Genre classification and the invariance of mfcc features to key and tempo
-
Berlin, Heidelberg Springer-Verlag
-
T. L. Li and A. B. Chan. Genre classification and the invariance of mfcc features to key and tempo. In Proceedings of the 17th international conference on Advances in multimedia modeling - Volume Part I, MMM'11, pages 317-327, Berlin, Heidelberg, 2011. Springer-Verlag.
-
(2011)
Proceedings of the 17th International Conference on Advances in Multimedia Modeling - Volume Part I, MMM'11
, pp. 317-327
-
-
Li, T.L.1
Chan, A.B.2
-
13
-
-
84873596118
-
Improving genre classification by combination of audio and symbolic descriptors using a transcription system
-
T. Lidy and A. Rauber. Improving genre classification by combination of audio and symbolic descriptors using a transcription system. In Proc. ISMIR, 2007.
-
(2007)
Proc. isMIR
-
-
Lidy, T.1
Rauber, A.2
-
14
-
-
2942722135
-
Content-based playlist generation: Exploratory experiments
-
B. Logan. Content-based playlist generation: Exploratory experiments. In ISMIR, 2002.
-
(2002)
ISMIR
-
-
Logan, B.1
-
15
-
-
33846146171
-
Music recommendation from song sets
-
B. Logan. Music recommendation from song sets. In Proc ISMIR, pages 425-428, 2004.
-
(2004)
Proc isMIR
, pp. 425-428
-
-
Logan, B.1
-
16
-
-
11244349743
-
Semantic analysis of song lyrics
-
2004 IEEE International Conference on Multimedia and Expo (ICME)
-
B. Logan, A. Kositsky, and P. Moreno. Semantic analysis of song lyrics. In Proceedings of the 2003 IEEE International Conference on Multimedia and Expo, volume 2, pages 827-830, Baltimore, Maryland, USA, 2004. (Pubitemid 40063163)
-
(2004)
2004 IEEE International Conference on Multimedia and Expo (ICME)
, vol.2
, pp. 827-830
-
-
Logan, B.1
Kositsky, A.2
Moreno, P.3
-
17
-
-
78650869605
-
Feature selection in a cartesian ensemble of feature subspace classifiers for music categorisation
-
Florence (Italy), October ACM
-
Mayer and J. Inesta. Feature selection in a cartesian ensemble of feature subspace classifiers for music categorisation. In Proc. of. ACM Multimedia Workshop on Music and Machine Learning (MML 2010), pages 53-56, Florence (Italy), October 2010. ACM.
-
(2010)
Proc. Of. ACM Multimedia Workshop on Music and Machine Learning (MML 2010)
, pp. 53-56
-
-
Mayer1
Inesta, J.2
-
18
-
-
84873429683
-
Musical genre classification: Is it worth pursuing and how can it be improved?
-
C. McKay and I. Fujinaga. Musical genre classification: Is it worth pursuing and how can it be improved? In ISMIR, pages 101-106, 2006.
-
(2006)
ISMIR
, pp. 101-106
-
-
McKay, C.1
Fujinaga, I.2
-
19
-
-
84873462486
-
Combining features extracted from audio, symbolic and cultural sources
-
C. McKay and I. Fujinaga. Combining features extracted from audio, symbolic and cultural sources. In ISMIR, pages 597-602, 2008.
-
(2008)
ISMIR
, pp. 597-602
-
-
McKay, C.1
Fujinaga, I.2
-
20
-
-
33646767819
-
Improving music genre classification by short-time feature integration
-
A. Meng, P. Ahrendt, and J. Larsen. Improving music genre classification by short-time feature integration. In IEEE ICASSP, pages 497-500, 2005.
-
(2005)
IEEE ICASSP
, pp. 497-500
-
-
Meng, A.1
Ahrendt, P.2
Larsen, J.3
-
21
-
-
15544385732
-
Automatic feature extraction for classifying audio data
-
DOI 10.1007/s10994-005-5824-7
-
I. Mierswa and K. Morik. Automatic feature extraction for classifying audio data. Machine Learning Journal, 58:127-149, 2005. (Pubitemid 40400635)
-
(2005)
Machine Learning
, vol.58
, Issue.2-3
, pp. 127-149
-
-
Mierswa, I.1
Morik, K.2
-
23
-
-
22944440002
-
-
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
-
G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing, pages 273-280. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.
-
(1997)
A Vector Space Model for Automatic Indexing
, pp. 273-280
-
-
Salton, G.1
Wong, A.2
Yang, C.S.3
-
24
-
-
85032752479
-
Automatic genre classification of music content: A survey
-
N. Scaringella, G. Zoia, and D. Mlynek. Automatic genre classification of music content: a survey. Signal Processing Magazine, IEEE, 23(2):133-141, 2006.
-
(2006)
Signal Processing Magazine, IEEE
, vol.23
, Issue.2
, pp. 133-141
-
-
Scaringella, N.1
Zoia, G.2
Mlynek, D.3
-
25
-
-
0004082513
-
Auditory toolbox, version 2
-
Palo Alto, California, USA
-
M. Slaney. Auditory toolbox, version 2. Technical Report 1998-10, Interval Research Corporation, Palo Alto, California, USA, 1998.
-
(1998)
Technical Report 1998-10, Interval Research Corporation
-
-
Slaney, M.1
-
27
-
-
2942720297
-
Combining musical and cultural features for intelligent style detection
-
B. Whitman. Combining musical and cultural features for intelligent style detection. In Proc. Int. Conf. Music Information Retrieval (ISMIR), pages 47-52, 2002.
-
(2002)
Proc. Int. Conf. Music Information Retrieval (ISMIR)
, pp. 47-52
-
-
Whitman, B.1
|