-
1
-
-
0038682002
-
Mechanisms of TGF-β signaling from cell membrane to the nucleus
-
Shi Y, Massague J. 2003 Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685-700.
-
(2003)
Cell
, vol.113
, pp. 685-700
-
-
Shi, Y.1
Massague, J.2
-
2
-
-
58149213801
-
Non-Smad pathways in TGF-β signaling
-
doi:10.1038/cr.2008.328
-
Zhang YE. 2009 Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128-139. (doi:10.1038/cr.2008.328)
-
(2009)
Cell Res
, vol.19
, pp. 128-139
-
-
Zhang, Y.E.1
-
3
-
-
34548329486
-
Differentiation plasticity regulated by TGF-β family proteins in development and disease
-
doi:10.1038/ncb434
-
Derynck R, Akhurst RJ. 2007 Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nat. Cell Biol. 9, 1000-1004. (doi:10.1038/ncb434)
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1000-1004
-
-
Derynck, R.1
Akhurst, R.J.2
-
4
-
-
79960364782
-
Exploring anti-TGFβ therapies in cancer and fibrosis
-
doi:10.3109/08977194.2011.595411
-
Hawinkels LJ, Ten Dijke P. 2011 Exploring anti-TGFβ therapies in cancer and fibrosis. Growth Factors 29, 140-152. (doi:10.3109/08977194.2011. 595411)
-
(2011)
Growth Factors
, vol.29
, pp. 140-152
-
-
Hawinkels, L.J.1
Ten Dijke, P.2
-
5
-
-
47549090432
-
TGFβ in cancer
-
doi:10.1016/j.cell.2008.07.001
-
Massague J. 2008 TGFβ in cancer. Cell 134, 215-230. (doi:10.1016/j.cell.2008.07.001)
-
(2008)
Cell
, vol.134
, pp. 215-230
-
-
Massague, J.1
-
6
-
-
84864188557
-
Regulation of the transforming growth factor β pathway by reversible ubiquitylation
-
doi:10.1098/rsob.120082
-
Al-Salihi MA, Herhaus L, Sapkota GP. 2012 Regulation of the transforming growth factor β pathway by reversible ubiquitylation. Open Biol. 2, 120082. (doi:10.1098/rsob.120082)
-
(2012)
Open Biol.
, vol.2
, pp. 120082
-
-
Al-Salihi, M.A.1
Herhaus, L.2
Sapkota, G.P.3
-
7
-
-
84865315657
-
Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor-β pathway
-
doi:10.1016/j.cellsig.2012.07.003
-
Bruce DL, Macartney T, Yong W, Shou W, Sapkota GP. 2012 Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor-β pathway. Cell Signal. 24, 1999-2006. (doi:10.1016/j.cellsig.2012.07.003)
-
(2012)
Cell Signal
, vol.24
, pp. 1999-2006
-
-
Bruce, D.L.1
Macartney, T.2
Yong, W.3
Shou, W.4
Sapkota, G.P.5
-
8
-
-
84866742560
-
TGFβ signalling in context
-
doi:10.1038/nrm3434
-
Massague J. 2012 TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616-630. (doi:10.1038/nrm3434)
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 616-630
-
-
Massague, J.1
-
9
-
-
84862759403
-
Phosphatases in SMAD regulation
-
doi:10.1016/j.febslet.2012.02.001
-
Bruce DL, Sapkota GP. 2012 Phosphatases in SMAD regulation. FEBS Lett. 586, 1897-1905. (doi:10.1016/j.febslet.2012.02.001)
-
(2012)
FEBS Lett
, vol.586
, pp. 1897-1905
-
-
Bruce, D.L.1
Sapkota, G.P.2
-
10
-
-
69249131695
-
Transforming growth factor-β (TGF-β1) activates TAK1 via TAB1-mediated autophosphorylation, independent of TGF-β receptor kinase activity in mesangial cells
-
doi:10.1074/jbc.M109.007146
-
Kim SI, Kwak JH, Na HJ, Kim JK, Ding Y, Choi ME. 2009 Transforming growth factor-β (TGF-β1) activates TAK1 via TAB1-mediated autophosphorylation, independent of TGF-β receptor kinase activity in mesangial cells. J. Biol. Chem. 284, 22 285-22 296. (doi:10.1074/jbc.M109. 007146)
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 22285-22296
-
-
Kim, S.I.1
Kwak, J.H.2
Na, H.J.3
Kim, J.K.4
Ding, Y.5
Choi, M.E.6
-
11
-
-
53349164136
-
The type i TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
-
doi:10.1038/ncb1780
-
Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M. 2008 The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10, 1199-1207. (doi:10.1038/ncb1780)
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1199-1207
-
-
Sorrentino, A.1
Thakur, N.2
Grimsby, S.3
Marcusson, A.4
Von Bulow, V.5
Schuster, N.6
Zhang, S.7
Heldin, C.H.8
Landstrom, M.9
-
12
-
-
3142741044
-
Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-βinduced apoptosis in hepatoma cells
-
doi:10.1074/jbc.M313947200
-
Kim KY, Kim BC, Xu Z, Kim SJ. 2004 Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-βinduced apoptosis in hepatoma cells. J. Biol. Chem. 279, 29 478-29 484. (doi:10.1074/jbc.M313947200)
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 29478-29484
-
-
Kim, K.Y.1
Kim, B.C.2
Xu, Z.3
Kim, S.J.4
-
13
-
-
0242322012
-
Transforming growth factor-βinduced apoptosis is mediated by SMAD-dependent expression of GADD45b through p38 activation
-
doi:10.1074/jbc.M307869200
-
Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace Jr AJ, Liebermann DA, Bottinger EP, Roberts AB. 2003 Transforming growth factor-βinduced apoptosis is mediated by SMAD-dependent expression of GADD45b through p38 activation. J. Biol. Chem. 278, 43 001-43 007. (doi:10.1074/jbc.M307869200)
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 43001-43007
-
-
Yoo, J.1
Ghiassi, M.2
Jirmanova, L.3
Balliet, A.G.4
Hoffman, B.5
Fornace Jr., A.J.6
Liebermann, D.A.7
Bottinger, E.P.8
Roberts, A.B.9
-
14
-
-
0037099745
-
TGF-β receptor-activated p38 MAP kinase mediates SMADindependent TGF-β responses
-
doi:10.1093/emboj/cdf366
-
Yu L, Hebert MC, Zhang YE. 2002 TGF-β receptor-activated p38 MAP kinase mediates SMADindependent TGF-β responses. EMBO J. 21, 3749-3759. (doi:10.1093/emboj/cdf366)
-
(2002)
EMBO J
, vol.21
, pp. 3749-3759
-
-
Yu, L.1
Hebert, M.C.2
Zhang, Y.E.3
-
15
-
-
0037011062
-
SMAD-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β
-
Takekawa M, Tatebayashi K, Itoh F, Adachi M, Imai K, Saito H. 2002 SMAD-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO J. 21, 6473-6482.
-
(2002)
EMBO J
, vol.21
, pp. 6473-6482
-
-
Takekawa, M.1
Tatebayashi, K.2
Itoh, F.3
Adachi, M.4
Imai, K.5
Saito, H.6
-
16
-
-
0036674213
-
P38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration
-
Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL. 2002 p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J. Cell Sci. 115, 3193-3206.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 3193-3206
-
-
Bakin, A.V.1
Rinehart, C.2
Tomlinson, A.K.3
Arteaga, C.L.4
-
17
-
-
0029551805
-
Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction
-
Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K. 1995 Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008-2011.
-
(1995)
Science
, vol.270
, pp. 2008-2011
-
-
Yamaguchi, K.1
Shirakabe, K.2
Shibuya, H.3
Irie, K.4
Oishi, I.5
Ueno, N.6
Taniguchi, T.7
Nishida, E.8
Matsumoto, K.9
-
18
-
-
34547154349
-
P38 MAP-kinases pathway regulation, function and role in human diseases
-
doi:10.1016/j.bbamcr.2007.03.010
-
Cuenda A, Rousseau S. 2007 p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta 1773, 1358-1375. (doi:10.1016/j.bbamcr.2007.03.010)
-
(2007)
Biochim. Biophys. Acta
, vol.1773
, pp. 1358-1375
-
-
Cuenda, A.1
Rousseau, S.2
-
19
-
-
84857975133
-
New Insights into the p38g and p38d MAPK pathways
-
doi:10.1155/2012/520289
-
Risco A, Cuenda A. 2012 New Insights into the p38g and p38d MAPK pathways. J. Signal Transduct. 2012, 520289. (doi:10.1155/2012/520289)
-
(2012)
J. Signal Transduct.
, vol.2012
, pp. 520289
-
-
Risco, A.1
Cuenda, A.2
-
20
-
-
0041660960
-
Mechanism of p38 MAP kinase activation in vivo
-
doi:10.1101/gad.1107303
-
Brancho D et al. 2003 Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17, 1969-1978. (doi:10.1101/gad.1107303)
-
(2003)
Genes Dev.
, vol.17
, pp. 1969-1978
-
-
Brancho, D.1
-
21
-
-
27944461325
-
Generation and characterization of p38b (MAPK11) gene-targeted mice
-
doi:10.1128/MCB.25.23.10454-10464.2005
-
Beardmore VA et al. 2005 Generation and characterization of p38b (MAPK11) gene-targeted mice. Mol. Cell Biol. 25, 10 454-10 464. (doi:10.1128/MCB.25.23. 10454-10464.2005)
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 10454-10464
-
-
Beardmore, V.A.1
-
22
-
-
65349096856
-
TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells
-
doi:10.2217/14796694.5.1.1
-
Thakur N, Sorrentino A, Heldin CH, Landstrom M. 2009 TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Future Oncol. 5, 1-3. (doi:10.2217/14796694.5.1.1)
-
(2009)
Future Oncol
, vol.5
, pp. 1-3
-
-
Thakur, N.1
Sorrentino, A.2
Heldin, C.H.3
Landstrom, M.4
-
23
-
-
80053637854
-
TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway
-
doi:10.1101/gad.17224711
-
Kant S, Swat W, Zhang S, Zhang ZY, Neel BG, Flavell RA, Davis RJ. 2011 TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev. 25, 2069-2078. (doi:10.1101/gad.17224711)
-
(2011)
Genes Dev
, vol.25
, pp. 2069-2078
-
-
Kant, S.1
Swat, W.2
Zhang, S.3
Zhang, Z.Y.4
Neel, B.G.5
Flavell, R.A.6
Davis, R.J.7
-
24
-
-
52049111663
-
TRAF6 mediates SMAD-independent activation of JNK and p38 by TGF-β
-
doi:10.1016/j.molcel.2008.09.002
-
Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. 2008 TRAF6 mediates SMAD-independent activation of JNK and p38 by TGF-β. Mol. Cell. 31, 918-924. (doi:10.1016/j.molcel.2008.09.002)
-
(2008)
Mol. Cell.
, vol.31
, pp. 918-924
-
-
Yamashita, M.1
Fatyol, K.2
Jin, C.3
Wang, X.4
Liu, Z.5
Zhang, Y.E.6
-
25
-
-
58149178554
-
TRAF6 autoubiquitination-independent activation of the NFκB and MAPK pathways in response to IL-1 and RANKL
-
doi:10.1371/journal.pone.0004064
-
Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y. 2008 TRAF6 autoubiquitination-independent activation of the NFκB and MAPK pathways in response to IL-1 and RANKL. PLoS ONE 3, e4064. (doi:10.1371/journal.pone. 0004064)
-
(2008)
PLoS ONE
, vol.3
-
-
Walsh, M.C.1
Kim, G.K.2
Maurizio, P.L.3
Molnar, E.E.4
Choi, Y.5
-
26
-
-
0029761275
-
TRAF6 is a signal transducer for interleukin-1
-
doi:10.1038/383443a0
-
Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. 1996 TRAF6 is a signal transducer for interleukin-1. Nature 383, 443-446. (doi:10.1038/383443a0)
-
(1996)
Nature
, vol.383
, pp. 443-446
-
-
Cao, Z.1
Xiong, J.2
Takeuchi, M.3
Kurama, T.4
Goeddel, D.V.5
-
27
-
-
0042237016
-
A role for MEK kinase 1 in TGFβ/activin-induced epithelium movement and embryonic eyelid closure
-
doi:10.1093/emboj/cdg440
-
Zhang L et al. 2003 A role for MEK kinase 1 in TGFβ/activin-induced epithelium movement and embryonic eyelid closure. EMBO J. 22, 4443-4454. (doi:10.1093/emboj/cdg440)
-
(2003)
EMBO J.
, vol.22
, pp. 4443-4454
-
-
Zhang, L.1
-
28
-
-
33748999526
-
TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells
-
doi:10.1093/intimm/dxl082
-
Sato S, Sanjo H, Tsujimura T, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Takeuchi O, Akira S. 2006 TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int. Immunol. 18, 1405-1411. (doi:10.1093/intimm/dxl082)
-
(2006)
Int. Immunol.
, vol.18
, pp. 1405-1411
-
-
Sato, S.1
Sanjo, H.2
Tsujimura, T.3
Ninomiya-Tsuji, J.4
Yamamoto, M.5
Kawai, T.6
Takeuchi, O.7
Akira, S.8
-
29
-
-
27744577296
-
TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo
-
doi:10.1101/gad.1360605
-
Shim JH et al. 2005 TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668-2681. (doi:10.1101/gad.1360605)
-
(2005)
Genes Dev
, vol.19
, pp. 2668-2681
-
-
Shim, J.H.1
-
30
-
-
0242473165
-
Feedback control of the protein kinase TAK1 by SAPK2a/p38a
-
doi:10.1093/emboj/cdg552
-
Cheung PC, Campbell DG, Nebreda AR, Cohen P. 2003 Feedback control of the protein kinase TAK1 by SAPK2a/p38a. EMBO J. 22, 5793-5805. (doi:10.1093/emboj/ cdg552)
-
(2003)
EMBO J
, vol.22
, pp. 5793-5805
-
-
Cheung, P.C.1
Campbell, D.G.2
Nebreda, A.R.3
Cohen, P.4
-
31
-
-
67651174283
-
TAK1 is an essential regulator of BMP signalling in cartilage
-
doi:10.1038/emboj.2009.162
-
Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B, Gygi S, Glimcher LH. 2009 TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J. 28, 2028-2041. (doi:10.1038/emboj.2009.162)
-
(2009)
EMBO J
, vol.28
, pp. 2028-2041
-
-
Shim, J.H.1
Greenblatt, M.B.2
Xie, M.3
Schneider, M.D.4
Zou, W.5
Zhai, B.6
Gygi, S.7
Glimcher, L.H.8
-
32
-
-
27544434183
-
Essential function for the kinase TAK1 in innate and adaptive immune responses
-
doi:10.1038/ni1255
-
Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S. 2005 Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087-1095. (doi:10.1038/ni1255)
-
(2005)
Nat. Immunol.
, vol.6
, pp. 1087-1095
-
-
Sato, S.1
Sanjo, H.2
Takeda, K.3
Ninomiya-Tsuji, J.4
Yamamoto, M.5
Kawai, T.6
Matsumoto, K.7
Takeuchi, O.8
Akira, S.9
-
33
-
-
26444496532
-
Ablation of MEKK4 kinase activity causes neurulation and skeletal patterning defects in the mouse embryo
-
doi:10.1128/MCB.25.20.8948-8959.2005
-
Abell AN et al. 2005 Ablation of MEKK4 kinase activity causes neurulation and skeletal patterning defects in the mouse embryo. Mol. Cell Biol. 25, 8948-8959. (doi:10.1128/MCB.25.20.8948-8959.2005)
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 8948-8959
-
-
Abell, A.N.1
-
34
-
-
33747044916
-
Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate SMAD1 to attenuate BMP signaling
-
doi:10.1073/pnas.0605133103
-
Knockaert M, Sapkota G, Alarcon C, Massague J, Brivanlou AH. 2006 Unique players in the BMP pathway: small C-terminal domain phosphatases dephosphorylate SMAD1 to attenuate BMP signaling. Proc. Natl Acad. Sci. USA 103, 11 940-11 945. (doi:10.1073/pnas.0605133103)
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 11940-11945
-
-
Knockaert, M.1
Sapkota, G.2
Alarcon, C.3
Massague, J.4
Brivanlou, A.H.5
-
35
-
-
2542469918
-
P38 MAPK regulates IL-1b induced IL-6 expression through mRNA stability in osteoblasts
-
Patil C, Zhu X, Rossa Jr C, Kim YJ, Kirkwood KL. 2004 p38 MAPK regulates IL-1b induced IL-6 expression through mRNA stability in osteoblasts. Immunol. Invest. 33, 213-233.
-
(2004)
Immunol. Invest.
, vol.33
, pp. 213-233
-
-
Patil, C.1
Zhu, X.2
Rossa Jr., C.3
Kim, Y.J.4
Kirkwood, K.L.5
-
36
-
-
34250902994
-
Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms
-
doi:10.1038/sj.emboj.7601734
-
Xu W, Kasper LH, Lerach S, Jeevan T, Brindle PK. 2007 Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms. EMBO J. 26, 2890-2903. (doi:10.1038/sj.emboj.7601734)
-
(2007)
EMBO J
, vol.26
, pp. 2890-2903
-
-
Xu, W.1
Kasper, L.H.2
Lerach, S.3
Jeevan, T.4
Brindle, P.K.5
-
37
-
-
50049086910
-
The kinases MSK1 and MSK2 act as negative regulators of toll-like receptor signaling
-
doi:10.1038/ni.1644
-
Ananieva O et al. 2008 The kinases MSK1 and MSK2 act as negative regulators of toll-like receptor signaling. Nat. Immunol. 9, 1028-1036. (doi:10.1038/ni.1644)
-
(2008)
Nat. Immunol.
, vol.9
, pp. 1028-1036
-
-
Ananieva, O.1
-
38
-
-
84872390677
-
P38 MAPK a mediates cytokineinduced IL-6 and MMP-3 expression in human cardiac fibroblasts
-
doi:10.1016/j.bbrc.2012.11.071
-
Sinfield JK, Das A, O'Regan DJ, Ball SG, Porter KE, Turner NA. 2013 p38 MAPK a mediates cytokineinduced IL-6 and MMP-3 expression in human cardiac fibroblasts. Biochem. Biophys. Res. Commun. 430, 419-424. (doi:10.1016/j.bbrc. 2012.11.071)
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.430
, pp. 419-424
-
-
Sinfield, J.K.1
Das, A.2
O'Regan, D.J.3
Ball, S.G.4
Porter, K.E.5
Turner, N.A.6
-
39
-
-
0034887261
-
VX-745. Vertex pharmaceuticals
-
Haddad JJ. 2001 VX-745. Vertex pharmaceuticals. Curr. Opin. Invest. Drugs 2, 1070-1076.
-
(2001)
Curr. Opin. Invest. Drugs
, vol.2
, pp. 1070-1076
-
-
Haddad, J.J.1
-
40
-
-
0029931509
-
A human Mad protein acting as a BMP-regulated transcriptional activator
-
doi:10.1038/381620a0
-
Liu F, Hata A, Baker JC, Doody J, Carcamo J, Harland RM, Massague J. 1996 A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620-623. (doi:10.1038/381620a0)
-
(1996)
Nature
, vol.381
, pp. 620-623
-
-
Liu, F.1
Hata, A.2
Baker, J.C.3
Doody, J.4
Carcamo, J.5
Harland, R.M.6
Massague, J.7
-
41
-
-
0029786212
-
Receptorassociated Mad homologues synergize as effectors of the TGF-β response
-
doi:10.1038/383168a0
-
Zhang Y, Feng X, We R, Derynck R. 1996 Receptorassociated Mad homologues synergize as effectors of the TGF-β response. Nature 383, 168-172. (doi:10.1038/383168a0)
-
(1996)
Nature
, vol.383
, pp. 168-172
-
-
Zhang, Y.1
Feng, X.2
We, R.3
Derynck, R.4
-
42
-
-
63749083925
-
Targeting protein kinases for the development of anti-inflammatory drugs
-
doi:10.1016/j.ceb.2009.01.015
-
Cohen P. 2009 Targeting protein kinases for the development of anti-inflammatory drugs. Curr. Opin. Cell Biol. 21, 317-324. (doi:10.1016/j.ceb.2009.01.015)
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 317-324
-
-
Cohen, P.1
-
43
-
-
79953146978
-
TGFβ activates mitogen- and stressactivated protein kinase-1 (MSK1) to attenuate cell death
-
doi:10.1074/jbc.M110.167379
-
van der Heide LP, van Dinther M, Moustakas A, ten Dijke P. 2011 TGFβ activates mitogen- and stressactivated protein kinase-1 (MSK1) to attenuate cell death. J. Biol. Chem. 286, 5003-5011. (doi:10.1074/jbc.M110.167379)
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5003-5011
-
-
Van Der Heide, L.P.1
Van Dinther, M.2
Moustakas, A.3
Ten Dijke, P.4
-
44
-
-
80051471864
-
The specificities of small molecule inhibitors of the TGFβ and BMP pathways
-
doi:10.1016/j.cellsig.2011.06.019
-
Vogt J, Traynor R, Sapkota GP. 2011 The specificities of small molecule inhibitors of the TGFβ and BMP pathways. Cell Signal. 23, 1831-1842. (doi:10.1016/j.cellsig.2011.06.019)
-
(2011)
Cell Signal
, vol.23
, pp. 1831-1842
-
-
Vogt, J.1
Traynor, R.2
Sapkota, G.P.3
-
45
-
-
84864240454
-
USP11 augments TGFβ signalling by deubiquitylating ALK5
-
doi:10.1098/rsob.120063
-
Al-Salihi MA, Herhaus L, Macartney T, Sapkota GP. 2012 USP11 augments TGFβ signalling by deubiquitylating ALK5. Open Biol. 2, 120063. (doi:10.1098/rsob.120063)
-
(2012)
Open Biol.
, vol.2
, pp. 120063
-
-
Al-Salihi, M.A.1
Herhaus, L.2
Macartney, T.3
Sapkota, G.P.4
-
46
-
-
33846688094
-
Balancing BMP signaling through integrated inputs into the SMAD1 linker
-
doi:10.1016/j.molcel.2007.01.006
-
Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J. 2007 Balancing BMP signaling through integrated inputs into the SMAD1 linker. Mol. Cell. 25, 441-454. (doi:10.1016/j.molcel.2007.01.006)
-
(2007)
Mol. Cell.
, vol.25
, pp. 441-454
-
-
Sapkota, G.1
Alarcon, C.2
Spagnoli, F.M.3
Brivanlou, A.H.4
Massague, J.5
|