메뉴 건너뛰기




Volumn 28, Issue 3, 2013, Pages 360-375

Component-wise markov chain monte carlo: Uniform and geometric ergodicity under mixing and composition

Author keywords

Convergence rate.; Geometric ergodicity; Gibbs sampler; Markov chain; Metropolis within Gibbs; Monte carlo; Random scan; Uniform ergodicity

Indexed keywords


EID: 84885365910     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-STS423     Document Type: Article
Times cited : (60)

References (54)
  • 1
    • 84858018291 scopus 로고    scopus 로고
    • Kernel estimators of asymptotic variance for adaptive Markov chain Monte Carlo
    • MR2816345
    • ATCHADÉ, Y. F. (2011). Kernel estimators of asymptotic variance for adaptive Markov chain Monte Carlo. Ann. Statist. 39 990- 1011. MR2816345
    • (2011) Ann. Statist. , vol.39
    • Atchadé, Y.F.1
  • 2
    • 59149089296 scopus 로고    scopus 로고
    • Optimal scaling of Metropolis algorithms: Heading toward general target distributions
    • MR2532248
    • BÉDARD, M. and ROSENTHAL, J. S. (2008). Optimal scaling of Metropolis algorithms: Heading toward general target distributions. Canad. J. Statist. 36 483-503. MR2532248
    • (2008) Canad. J. Statist. , vol.36 , pp. 483-503
    • Bédard, M.1    Rosenthal, J.S.2
  • 3
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • BOOTH, J. G. and HOBERT, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 265- 285.
    • (1999) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.61
    • Booth, J.G.1    Hobert, J.P.2
  • 5
    • 0009527677 scopus 로고    scopus 로고
    • Geometric ergodicity of Metropolis-Hastings algorithms for conditional simulation in generalized linear mixed models
    • MR1891114
    • CHRISTENSEN, O. F.,MøLLER, J. andWAAGEPETERSEN, R. P. (2001). Geometric ergodicity of Metropolis-Hastings algorithms for conditional simulation in generalized linear mixed models. Methodol. Comput. Appl. Probab. 3 309-327. MR1891114
    • (2001) Methodol. Comput. Appl. Probab. , vol.3 , pp. 309-327
    • Christensen, O.F.1    Møller, J.2    Waagepetersen, R.P.3
  • 6
    • 1542469848 scopus 로고    scopus 로고
    • Crossed random effect models for multiple outcomes in a study of teratogenesis
    • MR1946573
    • COULL, B. A., HOBERT, J. P., RYAN, L. M. and HOLMES, L. B. (2001). Crossed random effect models for multiple outcomes in a study of teratogenesis. J. Amer. Statist. Assoc. 96 1194-1204. MR1946573
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1194-1204
    • Coull, B.A.1    Hobert, J.P.2    Ryan, L.M.3    Holmes, L.B.4
  • 7
    • 50849137884 scopus 로고    scopus 로고
    • Gibbs sampling, exponential families and orthogonal polynomials
    • MR2446500
    • DIACONIS, P., KHARE, K. and SALOFF-COSTE, L. (2008). Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci. 23 151-178. MR2446500
    • (2008) Statist. Sci. , vol.23 , pp. 151-178
    • Diaconis, P.1    Khare, K.2    Saloffcoste, L.3
  • 8
    • 77956693464 scopus 로고    scopus 로고
    • Estimation of Bayes factors in a class of hierarchical random effects models using a geometrically ergodic MCMC algorithm
    • MR2675092
    • DOSS, H. and HOBERT, J. P. (2010). Estimation of Bayes factors in a class of hierarchical random effects models using a geometrically ergodic MCMC algorithm. J. Comput. Graph. Statist. 19 295-312. MR2675092
    • (2010) J. Comput. Graph. Statist. , vol.19 , pp. 295-312
    • Doss, H.1    Hobert, J.P.2
  • 9
    • 50849118196 scopus 로고    scopus 로고
    • Markov chain Monte Carlo: Can we trust the third significant figure?
    • MR2516823
    • FLEGAL, J. M., HARAN, M. and JONES, G. L. (2008). Markov chain Monte Carlo: Can we trust the third significant figure? Statist. Sci. 23 250-260. MR2516823
    • (2008) Statist.Sci. , vol.23 , pp. 250-260
    • Flegal, J.M.1    Haran, M.2    Jones, G.L.3
  • 10
    • 77649301784 scopus 로고    scopus 로고
    • Batch means and spectral variance estimators in Markov chain Monte Carlo
    • MR2604704
    • FLEGAL, J. M. and JONES, G. L. (2010). Batch means and spectral variance estimators in Markov chain Monte Carlo. Ann. Statist. 38 1034-1070. MR2604704
    • (2010) Ann. Statist. , vol.38 , pp. 1034-1070
    • Flegal, J.M.1    Jones, G.L.2
  • 11
    • 84857649419 scopus 로고    scopus 로고
    • Implementing Markov chain Monte Carlo: Estimating with confidence
    • In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. L. Jones and X. L. Meng, eds.). CRC Press, Boca Raton, FL.
    • FLEGAL, J. M. and JONES, G. L. (2011). Implementing Markov chain Monte Carlo: Estimating with confidence. In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. L. Jones and X. L. Meng, eds.). CRC Press, Boca Raton, FL.
    • (2011)
    • Flegal, J.M.1    Jones, G.L.2
  • 12
  • 13
    • 0002218961 scopus 로고    scopus 로고
    • Likelihood inference for spatial point processes
    • In Stochastic Geometry (Toulouse, 1996) (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, eds.). Monographs on Statistics and Applied Probability . Chapman & Hall/CRC, Boca Raton, FL. MR1673118
    • GEYER, C. (1999). Likelihood inference for spatial point processes. In Stochastic Geometry (Toulouse, 1996) (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, eds.). Monographs on Statistics and Applied Probability 80 79- 140. Chapman & Hall/CRC, Boca Raton, FL. MR1673118
    • (1999) , vol.80
    • Geyer, C.1
  • 14
    • 0442293794 scopus 로고    scopus 로고
    • Hierarchical models: A current computational perspective
    • MR1825284
    • HOBERT, J. P. (2000). Hierarchical models: A current computational perspective. J. Amer. Statist. Assoc. 95 1312-1316. MR1825284
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 1312-1316
    • Hobert, J.P.1
  • 15
    • 84873662740 scopus 로고    scopus 로고
    • The data augmentation algorithm: Theory and methodology
    • In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. L. Jones and X. L. Meng, eds.). CRC Press, Boca Raton, FL.
    • HOBERT, J. P. (2011). The data augmentation algorithm: Theory and methodology. In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. L. Jones and X. L. Meng, eds.). CRC Press, Boca Raton, FL.
    • (2011)
    • Hobert, J.P.1
  • 16
    • 0038569359 scopus 로고    scopus 로고
    • Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model
    • MR1659196
    • HOBERT, J. P. and GEYER, C. J. (1998). Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model. J. Multivariate Anal. 67 414-430. MR1659196
    • (1998) J. Multivariate Anal. , vol.67 , pp. 414-430
    • Hobert, J.P.1    Geyer, C.J.2
  • 17
    • 2142780945 scopus 로고    scopus 로고
    • On the applicability of regenerative simulation in Markov chain Monte Carlo
    • MR1946508
    • HOBERT, J. P., JONES, G. L., PRESNELL, B. and ROSENTHAL, J. S. (2002). On the applicability of regenerative simulation in Markov chain Monte Carlo. Biometrika 89 731-743. MR1946508
    • (2002) Biometrika , vol.89 , pp. 731-743
    • Hobert, J.P.1    Jones, G.L.2    Presnell, B.3    Rosenthal, J.S.4
  • 18
    • 0001562199 scopus 로고    scopus 로고
    • Geometric ergodicity of Metropolis algorithms
    • MR1731030
    • JARNER, S. F. and HANSEN, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341-361. MR1731030
    • (2000) Stochastic Process. Appl. , vol.85 , pp. 341-361
    • Jarner, S.F.1    Hansen, E.2
  • 19
    • 84879185383 scopus 로고    scopus 로고
    • Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm
    • JOHNSON, L. T. andGEYER, C. J. (2012). Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm. Ann. Statist. 40 3050-3076.
    • (2012) Ann. Statist. , vol.40 , pp. 3050-3076
    • Johnson, L.T.1    Eyer, C.J.2
  • 20
    • 78649758959 scopus 로고    scopus 로고
    • Gibbs sampling for a Bayesian hierarchical general linear model
    • MR2645487
    • JOHNSON, A. A. and JONES, G. L. (2010). Gibbs sampling for a Bayesian hierarchical general linear model. Electron. J. Stat. 4 313-333. MR2645487
    • (2010) Electron. J. Stat. , vol.4 , pp. 313-333
    • Johnson, A.A.1    Jones, G.L.2
  • 21
    • 84885365910 scopus 로고    scopus 로고
    • Supplement to Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity Under Mixing and Composition
    • DOI:10.1214/13-STS423SUPP.
    • JOHNSON, A. A., JONES, G. L. and NEATH, R. C. (2013). Supplement to "Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity Under Mixing and Composition." DOI:10.1214/13-STS423SUPP.
    • (2013)
    • Johnson, A.A.1    Jones, G.L.2    Neath, R.C.3
  • 22
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • MR1888447
    • JONES, G. L. and HOBERT, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334. MR1888447
    • (2001) Statist. Sci. , vol.16 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 23
    • 24344493048 scopus 로고    scopus 로고
    • Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
    • MR2060178
    • JONES, G. L. and HOBERT, J. P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist. 32 784-817. MR2060178
    • (2004) Ann. Statist. , vol.32 , pp. 784-817
    • Jones, G.L.1    Hobert, J.P.2
  • 24
    • 84885336656 scopus 로고    scopus 로고
    • Convergence of conditional Metropolis-Hastings samplers
    • To appear.
    • JONES, G. L., ROBERTS, G. O. and ROSENTHAL, J. S. (2013). Convergence of conditional Metropolis-Hastings samplers. J. Appl. Probab. To appear.
    • (2013) J. Appl. Probab.
    • Jones, G.L.1    Roberts, G.O.2    Rosenthal, J.S.3
  • 25
    • 33846101238 scopus 로고    scopus 로고
    • Fixed-width output analysis for Markov chain Monte Carlo
    • MR2279478
    • JONES, G. L., HARAN, M., CAFFO, B. S. and NEATH, R. (2006). Fixed-width output analysis for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 101 1537-1547. MR2279478
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1537-1547
    • Jones, G.L.1    Haran, M.2    Caffo, B.S.3    Neath, R.4
  • 27
    • 84885363627 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data
    • Preprint.
    • LEE, K. J., JONES, G. L., CAFFO, B. S. and BASSETT, S. (2013). Spatial Bayesian variable selection models on functional magnetic resonance imaging time-series data. Preprint.
    • (2013)
    • Lee, K.J.1    Jones, G.L.2    Caffo, B.S.3    Bassett, S.4
  • 28
    • 2142729827 scopus 로고    scopus 로고
    • Geometric ergodicity of van Dyk and Meng's algorithm for the multivariate Student's t model
    • MR2054301
    • MARCHEV, D. and HOBERT, J. P. (2004). Geometric ergodicity of van Dyk and Meng's algorithm for the multivariate Student's t model. J. Amer. Statist. Assoc. 99 228-238. MR2054301
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 228-238
    • Marchev, D.1    Hobert, J.P.2
  • 29
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • MR1436105
    • MCCULLOCH, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models. J. Amer. Statist. Assoc. 92 162-170. MR1436105
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 162-170
    • Mcculloch, C.E.1
  • 30
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • MR1389882
    • MENGERSEN, K. L. and TWEEDIE, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121. MR1389882
    • (1996) Ann. Statist. , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 31
    • 0003637131 scopus 로고
    • Markov Chains and Stochastic Stability
    • Springer, London. MR1287609
    • MEYN, S. P. and TWEEDIE, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London. MR1287609
    • (1993)
    • Meyn, S.P.1    Tweedie, R.L.2
  • 32
    • 0000566364 scopus 로고
    • Computable bounds for geometric convergence rates of Markov chains
    • MR1304770
    • MEYN, S. P. and TWEEDIE, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4 981-1011. MR1304770
    • (1994) Ann. Appl. Probab. , vol.4 , pp. 981-1011
    • Meyn, S.P.1    Tweedie, R.L.2
  • 33
    • 33746863011 scopus 로고    scopus 로고
    • Optimal scaling for partially updating MCMC algorithms
    • MR2244423
    • NEAL, P. and ROBERTS, G. (2006). Optimal scaling for partially updating MCMC algorithms. Ann. Appl. Probab. 16 475-515. MR2244423
    • (2006) Ann. Appl. Probab. , vol.16 , pp. 475-515
    • Neal, P.1    Roberts, G.2
  • 34
    • 84885344698 scopus 로고    scopus 로고
    • On convergence properties of the Monte Carlo EM algorithm
    • In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris L. Eaton (G. L. Jones and X. Shen, eds.). To appear.
    • NEATH, R. C. (2013). On convergence properties of the Monte Carlo EM algorithm. In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris L. Eaton (G. L. Jones and X. Shen, eds.). To appear.
    • (2013)
    • Neath, R.C.1
  • 35
    • 50649109863 scopus 로고    scopus 로고
    • Stability of the Gibbs sampler for Bayesian hierarchical models
    • MR2387965
    • PAPASPILIOPOULOS, O. and ROBERTS, G. (2008). Stability of the Gibbs sampler for Bayesian hierarchical models. Ann. Statist. 36 95-117. MR2387965
    • (2008) Ann. Statist. , vol.36 , pp. 95-117
    • Papaspiliopoulos, O.1    Roberts, G.2
  • 36
    • 84972527127 scopus 로고
    • Convergence control methods for Markov chain Monte Carlo algorithms
    • MR1390517
    • ROBERT, C. P. (1995). Convergence control methods for Markov chain Monte Carlo algorithms. Statist. Sci. 10 231-253. MR1390517
    • (1995) Statist. Sci. , vol.10 , pp. 231-253
    • Robert, C.P.1
  • 38
    • 0002074149 scopus 로고    scopus 로고
    • Geometric ergodicity and hybrid Markov chains
    • (electronic) MR1448322
    • ROBERTS, G. O. andROSENTHAL, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab. 2 13-25 (electronic). MR1448322
    • (1997) Electron. Commun. Probab. , vol.2 , pp. 13-25
    • Roberts, G.O.1    Osenthal, J.S.2
  • 39
    • 0032221199 scopus 로고    scopus 로고
    • Two convergence properties of hybrid samplers
    • MR1624941
    • ROBERTS, G. O. and ROSENTHAL, J. S. (1998). Two convergence properties of hybrid samplers. Ann. Appl. Probab. 8 397-407. MR1624941
    • (1998) Ann. Appl. Probab. , vol.8 , pp. 397-407
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 41
    • 0035535910 scopus 로고    scopus 로고
    • Markov chains and de-initializing processes
    • MR1858413
    • ROBERTS, G. O. and ROSENTHAL, J. S. (2001). Markov chains and de-initializing processes. Scand. J. Stat. 28 489-504. MR1858413
    • (2001) Scand. J. Stat. , vol.28 , pp. 489-504
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 42
    • 84890736685 scopus 로고    scopus 로고
    • General state space Markov chains and MCMC algorithms
    • MR2095565
    • ROBERTS, G. O. and ROSENTHAL, J. S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20-71. MR2095565
    • (2004) Probab. Surv. , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 43
    • 0000051645 scopus 로고    scopus 로고
    • Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler
    • MR1440584
    • ROBERTS, G. O. and SAHU, S. K. (1997). Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. J. R. Stat. Soc. Ser. B Stat. Methodol. 59 291-317. MR1440584
    • (1997) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.59 , pp. 291-317
    • Roberts, G.O.1    Sahu, S.K.2
  • 44
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings andMetropolis algorithms
    • MR1399158
    • ROBERTS, G. O. and TWEEDIE, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings andMetropolis algorithms. Biometrika 83 95-110. MR1399158
    • (1996) Biometrika , vol.83 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2
  • 45
    • 84879174941 scopus 로고    scopus 로고
    • Convergence analysis of block Gibbs samplers for Bayesian general linear mixed models
    • Ph.D. thesis, Dept. Statistics, Univ. Florida.
    • ROMÁN, J. C. (2012). Convergence analysis of block Gibbs samplers for Bayesian general linear mixed models. Ph.D. thesis, Dept. Statistics, Univ. Florida.
    • (2012)
    • Román, J.C.1
  • 46
    • 84879166862 scopus 로고    scopus 로고
    • Convergence analysis of the Gibbs sampler for Bayesian general linear mixed models with improper priors
    • ROMÁN, J. C. and HOBERT, J. P. (2012). Convergence analysis of the Gibbs sampler for Bayesian general linear mixed models with improper priors. Ann. Statist. 40 2823-2849.
    • (2012) Ann. Statist. , vol.40 , pp. 2823-2849
    • Román, J.C.1    Hobert, J.P.2
  • 47
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • MR1340509
    • ROSENTHAL, J. S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566. MR1340509
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 48
    • 21444459448 scopus 로고    scopus 로고
    • Analysis of the Gibbs sampler for a model related to James-Stein estimators
    • ROSENTHAL, J. S. (1996). Analysis of the Gibbs sampler for a model related to James-Stein estimators. Statist. Comput. 6 269-275.
    • (1996) Statist. Comput. , vol.6 , pp. 269-275
    • Rosenthal, J.S.1
  • 49
    • 85055166148 scopus 로고    scopus 로고
    • Optimal proposal distributions and adaptive MCMC
    • In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. L. Jones and X. L. Meng, eds.). CRC Press, Boca Raton, FL.
    • ROSENTHAL, J. S. (2011). Optimal proposal distributions and adaptive MCMC. In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. Gelman, G. L. Jones and X. L. Meng, eds.). CRC Press, Boca Raton, FL.
    • (2011)
    • Rosenthal, J.S.1
  • 50
    • 34547837457 scopus 로고    scopus 로고
    • Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression
    • MR2370071
    • ROY, V. and HOBERT, J. P. (2007). Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 607-623. MR2370071
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.69 , pp. 607-623
    • Roy, V.1    Hobert, J.P.2
  • 51
    • 72449129941 scopus 로고    scopus 로고
    • Block Gibbs sampling for Bayesian random effects models with improper priors: Convergence and regeneration
    • MR2598033
    • TAN, A. and HOBERT, J. P. (2009). Block Gibbs sampling for Bayesian random effects models with improper priors: Convergence and regeneration. J. Comput. Graph. Statist. 18 861-878. MR2598033
    • (2009) J. Comput. Graph. Statist. , vol.18 , pp. 861-878
    • Tan, A.1    Hobert, J.P.2
  • 52
    • 84934918740 scopus 로고    scopus 로고
    • On the geometric ergodicity of two-variable Gibbs samplers
    • In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris L. Eaton (G. L. Jones and X. Shen, eds.). To appear.
    • TAN, A., JONES, G. L. and HOBERT, J. P. (2013). On the geometric ergodicity of two-variable Gibbs samplers. In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris L. Eaton (G. L. Jones and X. Shen, eds.). To appear.
    • (2013)
    • Tan, A.1    Jones, G.L.2    Hobert, J.P.3
  • 53
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • MR0898357
    • TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550. MR0898357
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 54
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • MR1329166
    • TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1762. MR1329166
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.