메뉴 건너뛰기




Volumn 32, Issue 2, 2004, Pages 784-817

Sufficient burn-in for Gibbs samplers for a hierarchical random effects model

Author keywords

Block Gibbs sampler; Burn in; Convergence rate; Drift condition; Geometric ergodicity; Markov chain; Minorization condition; Monte Carlo; Total variation distance

Indexed keywords


EID: 24344493048     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053604000000184     Document Type: Article
Times cited : (82)

References (24)
  • 1
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: A comparative review
    • COWLES, M. K. and CARLIN, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: A comparative review. J. Amer. Statist. Assoc. 91 883-904.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 3
    • 0042376950 scopus 로고    scopus 로고
    • A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    • COWLES, M. K. and ROSENTHAL, J. S. (1998). A simulation approach to convergence rates for Markov chain Monte Carlo algorithms. Statist. Comput. 8 115-124.
    • (1998) Statist. Comput. , vol.8 , pp. 115-124
    • Cowles, M.K.1    Rosenthal, J.S.2
  • 4
    • 24344461986 scopus 로고    scopus 로고
    • Quantitative bounds for geometric convergence rates of Markov chains
    • Dept. Statistics, Univ. Toronto
    • DOUE, R., MOULINES, E. and ROSENTHAL, J. S. (2002). Quantitative bounds for geometric convergence rates of Markov chains. Technical report, Dept. Statistics, Univ. Toronto.
    • (2002) Technical Report
    • Doue, R.1    Moulines, E.2    Rosenthal, J.S.3
  • 5
    • 84865262077 scopus 로고
    • Illustration of Bayesian inference in normal data models using Gibbs sampling
    • GELFAND, A. E., HILLS, S. E., RACINE-POON, A. and SMITH, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Amer. Statist. Assoc. 85 972-985.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 972-985
    • Gelfand, A.E.1    Hills, S.E.2    Racine-Poon, A.3    Smith, A.F.M.4
  • 6
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 7
    • 85011492400 scopus 로고    scopus 로고
    • Discussion of "The art of data augmentation," by D. A. van Dyk and X.-L. Meng
    • HUBERT, J. P. (2001). Discussion of "The art of data augmentation," by D. A. van Dyk and X.-L. Meng. J. Comput. Graph. Statist. 10 59-68.
    • (2001) J. Comput. Graph. Statist. , vol.10 , pp. 59-68
    • Hubert, J.P.1
  • 8
    • 0038569359 scopus 로고    scopus 로고
    • Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model
    • HUBERT, J. P. and GEYER, C. J. (1998). Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model. J. Multivariate Anal. 67 414-430.
    • (1998) J. Multivariate Anal. , vol.67 , pp. 414-430
    • Hubert, J.P.1    Geyer, C.J.2
  • 10
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • JONES, G. L. and HUBERT, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312-334.
    • (2001) Statist. Sci. , vol.16 , pp. 312-334
    • Jones, G.L.1    Hubert, J.P.2
  • 11
    • 2142729827 scopus 로고    scopus 로고
    • Geometric ergodicity of van Dyk and Meng's algorithm for the multivariate Student's t model
    • MARCHEV, D. and HUBERT, J. P. (2004). Geometric ergodicity of van Dyk and Meng's algorithm for the multivariate Student's t model. J. Amer. Statist. Assoc. 99 228-238.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 228-238
    • Marchev, D.1    Hubert, J.P.2
  • 12
    • 0000761884 scopus 로고    scopus 로고
    • Seeking efficient data augmentation schemes via conditional and marginal augmentation
    • MENG, X.-L. and VAN DYK, D. A. (1999). Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86 301-320.
    • (1999) Biometrika , vol.86 , pp. 301-320
    • Meng, X.-L.1    Van Dyk, D.A.2
  • 14
    • 0000566364 scopus 로고
    • Computable bounds for geometric convergence rates of Markov chains
    • MEYN, S. P. and TWEEDIE, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4 981-1011.
    • (1994) Ann. Appl. Probab. , vol.4 , pp. 981-1011
    • Meyn, S.P.1    Tweedie, R.L.2
  • 15
    • 0032392354 scopus 로고    scopus 로고
    • Gibbs sampling with diffuse proper priors: A valid approach to data-driven inference?
    • NATARAJAN, R. and MCCULLOCH, C. E. (1998). Gibbs sampling with diffuse proper priors: A valid approach to data-driven inference? J. Comput. Graph. Statist. 7 267-277.
    • (1998) J. Comput. Graph. Statist. , vol.7 , pp. 267-277
    • Natarajan, R.1    Mcculloch, C.E.2
  • 17
    • 0001514831 scopus 로고    scopus 로고
    • Bounds on regeneration times and convergence rates for Markov chains
    • ROBERTS, G. O. and TWEEDIE, R. L. (1999). Bounds on regeneration times and convergence rates for Markov chains. Stochastic Process. Appl 80 211-229.
    • (1999) Stochastic Process. Appl , vol.80 , pp. 211-229
    • Roberts, G.O.1    Tweedie, R.L.2
  • 18
    • 0011733206 scopus 로고    scopus 로고
    • Corrigendum to "Bounds on regeneration times and convergence rates for Markov chains."
    • ROBERTS, G. O. and TWEEDIE, R. L. (2001). Corrigendum to "Bounds on regeneration times and convergence rates for Markov chains." Stochastic Process. Appl. 91 337-338.
    • (2001) Stochastic Process. Appl. , vol.91 , pp. 337-338
    • Roberts, G.O.1    Tweedie, R.L.2
  • 19
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • ROSENTHAL, J. S. (1995a). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 20
    • 0001096889 scopus 로고
    • Rates of convergence for Gibbs sampling for variance component models
    • ROSENTHAL, J. S. (1995b). Rates of convergence for Gibbs sampling for variance component models. Ann. Statist. 23 740-761.
    • (1995) Ann. Statist. , vol.23 , pp. 740-761
    • Rosenthal, J.S.1
  • 21
    • 21444459448 scopus 로고    scopus 로고
    • Analysis of the Gibbs sampler for a model related to James-Stein estimators
    • ROSENTHAL, J. S. (1996). Analysis of the Gibbs sampler for a model related to James-Stein estimators. Statist. Comput. 6 269-275.
    • (1996) Statist. Comput. , vol.6 , pp. 269-275
    • Rosenthal, J.S.1
  • 22
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 23
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1762.
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.