메뉴 건너뛰기




Volumn 99, Issue 465, 2004, Pages 228-238

Geometric ergodicity of van dyk and meng's algorithm for the multivariate student's t model

Author keywords

Burn in; Conditional augmentation; Convergence rate; Data augmentation; Drift condition; Gibbs sampler; Marginal Augmentation; Markov chain Monte Carlo; Minorization condition; Multivariate location scale Student's t distribution; Working parameter

Indexed keywords


EID: 2142729827     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1198/016214504000000223     Document Type: Article
Times cited : (40)

References (29)
  • 1
    • 0000576596 scopus 로고
    • Comment on “Markov Chains for Exploring Posterior Distributions,” by L. Tierney
    • Chan, K. S., and Geyer, C. J. (1994), Comment on “Markov Chains for Exploring Posterior Distributions,” by L. Tierney, The Annals of Statistics, 22, 1747–1758.
    • (1994) The Annals of Statistics , vol.22 , pp. 1747-1758
    • Chan, K.S.1    Geyer, C.J.2
  • 3
    • 33746447668 scopus 로고    scopus 로고
    • Multivariate Student-t Regression Models: Pitfalls and Inference
    • Fernández, C., and Steel, M. F. J. (1999), “Multivariate Student-t Regression Models: Pitfalls and Inference,” Biometrika, 86, 153–167.
    • (1999) Biometrika , vol.86 , pp. 153-167
    • Fernández, C.1    Steel, M.F.J.2
  • 4
    • 0034404486 scopus 로고    scopus 로고
    • Bayesian Regression Analysis With Scale Mixtures of Normals
    • Fernández, C., and Steel, M. F. J. (2000), “Bayesian Regression Analysis With Scale Mixtures of Normals,” Econometric Theory, 16, 80–101.
    • (2000) Econometric Theory , vol.16 , pp. 80-101
    • Fernández, C.1    Steel, M.F.J.2
  • 5
    • 84972511893 scopus 로고
    • Practical Markov Chain Monte Carlo (With discussion)
    • Geyer, C. J. (1992), “Practical Markov Chain Monte Carlo” (with discussion), Statistical Science, 7, 473–511.
    • (1992) Statistical Science , vol.7 , pp. 473-511
    • Geyer, C.J.1
  • 7
    • 85011492400 scopus 로고    scopus 로고
    • Discussion of “The Art of Data Augmentation,”
    • by D. A. van Dyk and X.-L. Meng
    • Hobert, J. P. (2001a), Discussion of “The Art of Data Augmentation,” by D. A. van Dyk and X.-L. Meng, Journal of Computational and Graphical Statistics, 10, 59–68.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , pp. 59-68
    • Hobert, J.P.1
  • 8
    • 0035609584 scopus 로고    scopus 로고
    • Stability Relationships Among the Gibbs Sampler and Its Subchains
    • Hobert, J. P. (2001b), “Stability Relationships Among the Gibbs Sampler and Its Subchains,” Journal of Computational and Graphical Statistics, 10, 185–205.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , pp. 185-205
    • Hobert, J.P.1
  • 9
    • 2142780945 scopus 로고    scopus 로고
    • On the Applicability of Regenerative Simulation in Markov Chain Monte Carlo
    • Hobert, J. P., Jones, G. L., Presnell, B., and Rosenthal, J. S. (2002), “On the Applicability of Regenerative Simulation in Markov Chain Monte Carlo,” Biometrika, 89, 731–743.
    • (2002) Biometrika , vol.89 , pp. 731-743
    • Hobert, J.P.1    Jones, G.L.2    Presnell, B.3    Rosenthal, J.S.4
  • 11
    • 0000154395 scopus 로고    scopus 로고
    • Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo
    • Jones, G. L., and Hobert, J. P. (2001), “Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo,” Statistical Science, 16, 312–334.
    • (2001) Statistical Science , vol.16 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 13
    • 2142841554 scopus 로고    scopus 로고
    • A Marginal Ergodic Theorem
    • J. M. Bernardo, A. P. Dawid, J. O. Berger, and M. West, Oxford, UK: Oxford University Press
    • Lavine, M. (2003), “A Marginal Ergodic Theorem,” in Bayesian Statistics 7, eds. J. M. Bernardo, A. P. Dawid, J. O. Berger, and M. West, Oxford, UK: Oxford University Press.
    • (2003) Bayesian Statistics , vol.7
    • Lavine, M.1
  • 14
    • 0042123139 scopus 로고    scopus 로고
    • Bayesian Robust Multivariate Linear Regression With Incomplete Data
    • Liu, C. (1996), “Bayesian Robust Multivariate Linear Regression With Incomplete Data,” Journal of the American Statistical Association, 91, 1219–1227.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1219-1227
    • Liu, C.1
  • 15
    • 0001789822 scopus 로고
    • Covariance Structure of the Gibbs Sampler With Applications to Comparisons of Estimators and Augmentation Schemes
    • Liu, J. S., Wong, W. H., and Kong, A. (1994), “Covariance Structure of the Gibbs Sampler With Applications to Comparisons of Estimators and Augmentation Schemes,” Biometrika, 81, 27–40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 19
    • 0000761884 scopus 로고    scopus 로고
    • Seeking Efficient Data Augmentation Schemes via Conditional and Marginal Augmentation
    • Meng, X.-L., and van Dyk, D. A. (1999), “Seeking Efficient Data Augmentation Schemes via Conditional and Marginal Augmentation,” Biometrika, 86, 301–320.
    • (1999) Biometrika , vol.86 , pp. 301-320
    • Meng, X.-L.1    Van Dyk, D.A.2
  • 21
    • 0000566364 scopus 로고
    • “Computable Bounds for Geometric Convergence Rates of Markov Chains
    • Meyn, S. P., and Tweedie, R. L. (1994), “Computable Bounds for Geometric Convergence Rates of Markov Chains,” The Annals of Applied Probability, 4, 981–1011.
    • (1994) The Annals of Applied Probability , vol.4 , pp. 981-1011
    • Meyn, S.P.1    Tweedie, R.L.2
  • 24
    • 0001514831 scopus 로고    scopus 로고
    • L. (1999), “Bounds on Regeneration Times and Convergence Rates for Markov Chains
    • corrigendum (2001), 91, 337–338
    • Roberts, G., and Tweedie, R. L. (1999), “Bounds on Regeneration Times and Convergence Rates for Markov Chains, Stochastic Processes and Their Applications, 80, 211–229; corrigendum (2001), 91, 337–338.
    • Stochastic Processes and Their Applications , vol.80 , pp. 211-229
    • Roberts, G.1    Tweedie, R.2
  • 25
    • 84923618271 scopus 로고
    • Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo
    • Rosenthal, J. S. (1995), “Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo,” Journal of the American Statistical Association, 90, 558–566.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 26
    • 84950758368 scopus 로고
    • The Calculation of Posterior Distributions by Data Augmentation (With discussion)
    • Tanner, M. A., and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Augmentation” (with discussion), Journal of the American Statistical Association, 82, 528–550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 27
    • 85011181115 scopus 로고
    • Markov Chains for Exploring Posterior Distributions (With discussion)
    • Tierney, L. (1994), “Markov Chains for Exploring Posterior Distributions” (with discussion), The Annals of Statistics, 22, 1701–1762.
    • (1994) The Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 29
    • 0000108540 scopus 로고
    • Outlier Models and Prior Distributions in Bayesian Linear Regression
    • West, M. (1984), “Outlier Models and Prior Distributions in Bayesian Linear Regression,” Journal of the Royal Statistical Society, Ser. B, 46, 431–439.
    • (1984) Journal of the Royal Statistical Society, Ser. B , vol.46 , pp. 431-439
    • West, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.