메뉴 건너뛰기




Volumn , Issue , 2011, Pages 93-112

Optimal proposal distributions and adaptive MCMC

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85055166148     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (182)

References (43)
  • 2
    • 33750512542 scopus 로고    scopus 로고
    • On the ergodicity properties of some adaptive Markov chain Monte Carlo algorithms
    • Andrieu, C. and Moulines, E. 2006. On the ergodicity properties of some adaptive Markov chain Monte Carlo algorithms. Annals of Applied Probability, 16:1462-1505
    • (2006) Annals of Applied Probability , vol.16 , pp. 1462-1505
    • Andrieu, C.1    Moulines, E.2
  • 3
    • 33747075845 scopus 로고    scopus 로고
    • An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift
    • Atchadé, Y. F. 2006. An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift. Methodology and Computing in Applied Probability, 8:235-254
    • (2006) Methodology and Computing in Applied Probability , vol.8 , pp. 235-254
    • Atchadé, Y.F.1
  • 4
    • 85059365073 scopus 로고    scopus 로고
    • A cautionary tale on the efficiency of some adaptive Monte Carlo schemes
    • to appear
    • Atchadé, Y. F. 2007. A cautionary tale on the efficiency of some adaptive Monte Carlo schemes. Annals of Applied Probability, to appear
    • (2007) Annals of Applied Probability
    • Atchadé, Y.F.1
  • 5
    • 33747062507 scopus 로고    scopus 로고
    • On adaptive Markov chain Monte Carlo algorithms
    • Atchadé, Y. F. and Rosenthal, J. S. 2005. On adaptive Markov chain Monte Carlo algorithms. Bernoulli, 11:815-828
    • (2005) Bernoulli , vol.11 , pp. 815-828
    • Atchadé, Y.F.1    Rosenthal, J.S.2
  • 7
    • 42649097792 scopus 로고    scopus 로고
    • Weak convergence of Metropolis algorithms for non-iid target distributions
    • Bédard, M. 2007. Weak convergence of Metropolis algorithms for non-iid target distributions. Annals of Applied Probability, 17:1222-1244
    • (2007) Annals of Applied Probability , vol.17 , pp. 1222-1244
    • Bédard, M.1
  • 8
    • 46849119211 scopus 로고    scopus 로고
    • Efficient sampling using Metropolis algorithms: Applications of optimal scaling results
    • Bédard, M. 2008a. Efficient sampling using Metropolis algorithms: Applications of optimal scaling results. Journal of Computational and Graphical Statistics, 17:1-21
    • (2008) Journal of Computational and Graphical Statistics , vol.17 , pp. 1-21
    • Bédard, M.1
  • 9
    • 55649115998 scopus 로고    scopus 로고
    • Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234
    • Bédard, M. 2008b. Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234. Stochastic Processes and their Applications, 118(12):2198-2222
    • (2008) Stochastic Processes and their Applications , vol.118 , Issue.12 , pp. 2198-2222
    • Bédard, M.1
  • 10
    • 59149089296 scopus 로고    scopus 로고
    • Optimal scaling of Metropolis algorithms: Heading towards general target distributions
    • Bédard, M. and Rosenthal, J. S. 2008. Optimal scaling of Metropolis algorithms: Heading towards general target distributions. Canadian Journal of Statistics, 36(4):483-503
    • (2008) Canadian Journal of Statistics , vol.36 , Issue.4 , pp. 483-503
    • Bédard, M.1    Rosenthal, J.S.2
  • 14
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, (eds) Oxford University Press, Oxford
    • Gelman, A., Roberts, G. O., and Gilks, W. R. 1996. Efficient Metropolis jumping rules. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds), Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting, pp. 599-607. Oxford University Press, Oxford
    • (1996) Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting , pp. 599-607
    • Gelman, A.1    Roberts, G.O.2    Gilks, W.R.3
  • 15
    • 77954101819 scopus 로고    scopus 로고
    • Adaptive independent Metropolis-Hastings by fast estimation of mixtures of normals
    • to appear
    • Giordani, P. and Kohn, R. 2006. Adaptive independent Metropolis-Hastings by fast estimation of mixtures of normals. Journal of Computational and Graphical Statistics, to appear
    • (2006) Journal of Computational and Graphical Statistics
    • Giordani, P.1    Kohn, R.2
  • 16
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E., and Tamminen, J. 2001. An adaptive Metropolis algorithm. Bernoulli, 7:223-242
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 17
    • 33746082065 scopus 로고    scopus 로고
    • Componentwise adaptation for high dimensional MCMC
    • Haario, H., Saksman, E., and Tamminen, J. 2005. Componentwise adaptation for high dimensional MCMC. Computational Statistics, 20:265-274
    • (2005) Computational Statistics , vol.20 , pp. 265-274
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 19
    • 2142780945 scopus 로고    scopus 로고
    • On the applicability of regenerative simulation in Markov chain Monte Carlo
    • Hobert, J. P., Jones, G. L., Presnell, B., and Rosenthal, J. S. 2002. On the applicability of regenerative simulation in Markov chain Monte Carlo. Biometrika 89:731-743
    • (2002) Biometrika , vol.89 , pp. 731-743
    • Hobert, J.P.1    Jones, G.L.2    Presnell, B.3    Rosenthal, J.S.4
  • 20
    • 33645087459 scopus 로고    scopus 로고
    • On the Markov chain central limit theorem
    • Jones, G. L. 2004. On the Markov chain central limit theorem. Probability Surveys, 1:299-320
    • (2004) Probability Surveys , vol.1 , pp. 299-320
    • Jones, G.L.1
  • 21
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • Jones, G. L. and Hobert, J. P. 2001. Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statistical Science, 16(4):312-334
    • (2001) Statistical Science , vol.16 , Issue.4 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 23
    • 0042193001 scopus 로고    scopus 로고
    • Ordering and improving the performance of Monte Carlo Markov chains
    • Mira, A. 2001. Ordering and improving the performance of Monte Carlo Markov chains. Statistical Science, 16:340-350
    • (2001) Statistical Science , vol.16 , pp. 340-350
    • Mira, A.1
  • 25
    • 77949374261 scopus 로고    scopus 로고
    • Adaptively scaling the Metropolis algorithm using expected squared jumped distance
    • Pasarica, C. and Gelman,A. 2010.Adaptively scaling the Metropolis algorithm using expected squared jumped distance. Statistica Sinica, 20:343-364
    • (2010) Statistica Sinica , vol.20 , pp. 343-364
    • Pasarica, C.1    Gelman, A.2
  • 27
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Roberts, G. O., Gelman, A., and Gilks, W. R. 1997. Weak convergence and optimal scaling of random walk Metropolis algorithms. Annals of Applied Probability, 7:110-120
    • (1997) Annals of Applied Probability , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 29
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • Roberts, G. O. and Rosenthal, J. S. 2001. Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science, 16:351-367
    • (2001) Statistical Science , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 30
    • 84890736685 scopus 로고    scopus 로고
    • General state space Markov chains and MCMC algorithms
    • Roberts, G. O. and Rosenthal, J. S. 2004. General state space Markov chains and MCMC algorithms. Probability Surveys, 1:20-71
    • (2004) Probability Surveys , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 33
    • 85132364916 scopus 로고    scopus 로고
    • Exponential convergence of Langevin diffusions and their discrete approximations
    • Roberts, G. O. and Tweedie, R. L. 1996. Exponential convergence of Langevin diffusions and their discrete approximations. Bernoulli, 2:341-363
    • (1996) Bernoulli , vol.2 , pp. 341-363
    • Roberts, G.O.1    Tweedie, R.L.2
  • 34
    • 0001514831 scopus 로고    scopus 로고
    • Bounds on regeneration times and convergence rates for Markov chains
    • Corrigendum (2001), 91:337-338
    • Roberts, G. O. and Tweedie, R. L. 1999. Bounds on regeneration times and convergence rates for Markov chains. Stochastic Processes and Their Applications, 80: 211-229. Corrigendum (2001), 91:337-338
    • (1999) Stochastic Processes and Their Applications , vol.80 , pp. 211-229
    • Roberts, G.O.1    Tweedie, R.L.2
  • 35
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • Rosenthal, J. S. 1995. Minorization conditions and convergence rates for Markov chain Monte Carlo. Journal of the American Statistical Association, 90:558-566
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 36
    • 3042638629 scopus 로고    scopus 로고
    • Quantitative convergence rates of Markov chains: A simple account
    • Rosenthal, J. S. 2002. Quantitative convergence rates of Markov chains: A simple account. Electronic Communications in Probability, 7(13):123-128
    • (2002) Electronic Communications in Probability , vol.7 , Issue.13 , pp. 123-128
    • Rosenthal, J.S.1
  • 38
    • 34547188753 scopus 로고    scopus 로고
    • AMCMC: An R interface for adaptive MCMC
    • (Related software available at probability.ca/amcmc.)
    • Rosenthal, J. S. 2007. AMCMC: An R interface for adaptive MCMC. Computational Statistics & Data Analysis, 51:5467-5470. (Related software available at probability.ca/amcmc.)
    • (2007) Computational Statistics & Data Analysis , vol.51 , pp. 5467-5470
    • Rosenthal, J.S.1
  • 40
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • Tierney, L. 1994. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22:1701-1762
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 41
    • 38849086758 scopus 로고    scopus 로고
    • BGX: a Bioconductor package for the Bayesian integrated analysis of Affymetrix GeneChips
    • Turro, E., Bochkina, N., Hein, A. M. K., and Richardson, S. 2007. BGX: a Bioconductor package for the Bayesian integrated analysis of Affymetrix GeneChips. BMC Bioinformatics, 8:439-448. Available at: http://www.biomedcentral.com/1471-2105/8/439
    • (2007) BMC Bioinformatics , vol.8 , pp. 439-448
    • Turro, E.1    Bochkina, N.2    Hein, A.M.K.3    Richardson, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.