-
1
-
-
0004106191
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
Varki A. Essentials of Glycobiology 2009, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 2nd ed.
-
(2009)
Essentials of Glycobiology
-
-
Varki, A.1
-
2
-
-
79959381299
-
Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease
-
Hart G.W., Slawson C., Ramirez-Correa G., Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 2011, 80:825-858.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 825-858
-
-
Hart, G.W.1
Slawson, C.2
Ramirez-Correa, G.3
Lagerlof, O.4
-
3
-
-
77953713601
-
Modulation of transcription factor function by O-GlcNAc modification
-
Özcan S., Andrali S.S., Cantrell J.E.L. Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta, Gene Regul. Mech. 2010, 1799:353-364.
-
(2010)
Biochim. Biophys. Acta, Gene Regul. Mech.
, vol.1799
, pp. 353-364
-
-
Özcan, S.1
Andrali, S.S.2
Cantrell, J.E.L.3
-
4
-
-
77949295164
-
The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine
-
Hanover J.A., Krause M.W., Love D.C. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta 2010, 1800:80-95.
-
(2010)
Biochim. Biophys. Acta
, vol.1800
, pp. 80-95
-
-
Hanover, J.A.1
Krause, M.W.2
Love, D.C.3
-
5
-
-
0025855139
-
Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance
-
Marshall S., Bacote V., Traxinger R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 1991, 266:4706-4712.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 4706-4712
-
-
Marshall, S.1
Bacote, V.2
Traxinger, R.R.3
-
6
-
-
0037177870
-
Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I: potent feedback inhibition by glucosamine 6-phosphate
-
Broschat K.O., Gorka C., Page J.D., Martin-Berger C.L., Davies M.S., Huang Hc H.C., Gulve E.A., Salsgiver W.J., Kasten T.P. Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I: potent feedback inhibition by glucosamine 6-phosphate. J. Biol. Chem. 2002, 277:14764-14770.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 14764-14770
-
-
Broschat, K.O.1
Gorka, C.2
Page, J.D.3
Martin-Berger, C.L.4
Davies, M.S.5
Huang Hc, H.C.6
Gulve, E.A.7
Salsgiver, W.J.8
Kasten, T.P.9
-
7
-
-
0034854157
-
Glycan-dependent signaling: O-linked N-acetylglucosamine
-
Hanover J.A. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 2001, 15:1865-1876.
-
(2001)
FASEB J.
, vol.15
, pp. 1865-1876
-
-
Hanover, J.A.1
-
8
-
-
67649874094
-
The O-GlcNAc Modification
-
Cold Spring, Harbor (NY), A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, M.E. Etzler (Eds.)
-
Hart G.W., Akimoto Y. The O-GlcNAc Modification. Essentials of Glycobiology 2009, Cold Spring, Harbor (NY). A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, M.E. Etzler (Eds.).
-
(2009)
Essentials of Glycobiology
-
-
Hart, G.W.1
Akimoto, Y.2
-
9
-
-
84878235671
-
Cracking the O-GlcNAc code in metabolism
-
Ruan H.B., Singh J.P., Li M.D., Wu J., Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol. Metab. 2013, 24:301-309.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 301-309
-
-
Ruan, H.B.1
Singh, J.P.2
Li, M.D.3
Wu, J.4
Yang, X.5
-
10
-
-
77954308587
-
Increased expression of beta-N-acetylglucosaminidase in erythrocytes from individuals with pre-diabetes and diabetes
-
Park K., Saudek C.D., Hart G.W. Increased expression of beta-N-acetylglucosaminidase in erythrocytes from individuals with pre-diabetes and diabetes. Diabetes 2010, 59:1845-1850.
-
(2010)
Diabetes
, vol.59
, pp. 1845-1850
-
-
Park, K.1
Saudek, C.D.2
Hart, G.W.3
-
11
-
-
0030925291
-
Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin sensitive tissues
-
Virkamaki A., Daniels M.C., Hamalainen S., Utriainen T., McClain D., Yki-Jarvinen H. Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin sensitive tissues. Endocrinology 1997, 138:2501-2507.
-
(1997)
Endocrinology
, vol.138
, pp. 2501-2507
-
-
Virkamaki, A.1
Daniels, M.C.2
Hamalainen, S.3
Utriainen, T.4
McClain, D.5
Yki-Jarvinen, H.6
-
12
-
-
52049120841
-
Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling
-
Whelan S.A., Lane M.D., Hart G.W. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J. Biol. Chem. 2008, 283:21411-21417.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 21411-21417
-
-
Whelan, S.A.1
Lane, M.D.2
Hart, G.W.3
-
13
-
-
39749104251
-
Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance
-
Yang X., Ongusaha P.P., Miles P.D., Havstad J.C., Zhang F., So W.V., Kudlow J.E., Michell R.H., Olefsky J.M., Field S.J., Evans R.M. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008, 451:964-969.
-
(2008)
Nature
, vol.451
, pp. 964-969
-
-
Yang, X.1
Ongusaha, P.P.2
Miles, P.D.3
Havstad, J.C.4
Zhang, F.5
So, W.V.6
Kudlow, J.E.7
Michell, R.H.8
Olefsky, J.M.9
Field, S.J.10
Evans, R.M.11
-
14
-
-
77949332132
-
Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes
-
Whelan S.A., Dias W.B., Thiruneelakantapillai L., Lane M.D., Hart G.W. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J. Biol. Chem. 2010, 285:5204-5211.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5204-5211
-
-
Whelan, S.A.1
Dias, W.B.2
Thiruneelakantapillai, L.3
Lane, M.D.4
Hart, G.W.5
-
15
-
-
64149111641
-
A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose
-
Housley M.P., Udeshi N.D., Rodgers J.T., Shabanowitz J., Puigserver P., Hunt D.F., Hart G.W. A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 2009, 284:5148-5157.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 5148-5157
-
-
Housley, M.P.1
Udeshi, N.D.2
Rodgers, J.T.3
Shabanowitz, J.4
Puigserver, P.5
Hunt, D.F.6
Hart, G.W.7
-
16
-
-
84864708480
-
O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability
-
Ruan H.B., Han X., Li M.D., Singh J.P., Qian K., Azarhoush S., Zhao L., Bennett A.M., Samuel V.T., Wu J., Yates J.R., Yang X. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab. 2012, 16:226-237.
-
(2012)
Cell Metab.
, vol.16
, pp. 226-237
-
-
Ruan, H.B.1
Han, X.2
Li, M.D.3
Singh, J.P.4
Qian, K.5
Azarhoush, S.6
Zhao, L.7
Bennett, A.M.8
Samuel, V.T.9
Wu, J.10
Yates, J.R.11
Yang, X.12
-
17
-
-
40449128605
-
Hepatic glucose sensing via the CREB coactivator CRTC2
-
Dentin R., Hedrick S., Xie J., Yates J., Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008, 319:1402-1405.
-
(2008)
Science
, vol.319
, pp. 1402-1405
-
-
Dentin, R.1
Hedrick, S.2
Xie, J.3
Yates, J.4
Montminy, M.5
-
18
-
-
33747081065
-
Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer
-
Forsythe M.E., Love D.C., Lazarus B.D., Kim E.J., Prinz W.A., Ashwell G., Krause M.W., Hanover J.A. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:11952-11957.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 11952-11957
-
-
Forsythe, M.E.1
Love, D.C.2
Lazarus, B.D.3
Kim, E.J.4
Prinz, W.A.5
Ashwell, G.6
Krause, M.W.7
Hanover, J.A.8
-
19
-
-
23844481789
-
A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout
-
Hanover J.A., Forsythe M.E., Hennessey P.T., Brodigan T.M., Love D.C., Ashwell G., Krause M. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:11266-11271.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 11266-11271
-
-
Hanover, J.A.1
Forsythe, M.E.2
Hennessey, P.T.3
Brodigan, T.M.4
Love, D.C.5
Ashwell, G.6
Krause, M.7
-
20
-
-
77952171341
-
Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity
-
Love D.C., Ghosh S., Mondoux M.A., Fukushige T., Wang P., Wilson M.A., Iser W.B., Wolkow C.A., Krause M.W., Hanover J.A. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:7413-7418.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 7413-7418
-
-
Love, D.C.1
Ghosh, S.2
Mondoux, M.A.3
Fukushige, T.4
Wang, P.5
Wilson, M.A.6
Iser, W.B.7
Wolkow, C.A.8
Krause, M.W.9
Hanover, J.A.10
-
21
-
-
78649640325
-
Blocking O-Linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis
-
Sekine O., Love D.C., Rubenstein D.S., Hanover J.A. Blocking O-Linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis. J. Biol. Chem. 2010, 285:38684-38691.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 38684-38691
-
-
Sekine, O.1
Love, D.C.2
Rubenstein, D.S.3
Hanover, J.A.4
-
22
-
-
0037067659
-
Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression
-
Yang X., Zhang F., Kudlow J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 2002, 110:69-80.
-
(2002)
Cell
, vol.110
, pp. 69-80
-
-
Yang, X.1
Zhang, F.2
Kudlow, J.E.3
-
23
-
-
67650076327
-
Essential role of the glycosyltransferase Sxc/Ogt in polycomb repression
-
Gambetta M.C., Oktaba K., Müller J. Essential role of the glycosyltransferase Sxc/Ogt in polycomb repression. Science 2009, 325:93-96.
-
(2009)
Science
, vol.325
, pp. 93-96
-
-
Gambetta, M.C.1
Oktaba, K.2
Müller, J.3
-
24
-
-
79959334683
-
Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells
-
Myers S.A., Panning B., Burlingame A.L. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:9490-9495.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 9490-9495
-
-
Myers, S.A.1
Panning, B.2
Burlingame, A.L.3
-
25
-
-
69449092638
-
Drosophila O-GlcNAc transferase (OGT) is encoded by the polycomb group (PcG) gene, super sex combs (sxc)
-
Sinclair D.A., Syrzycka M., Macauley M.S., Rastgardani T., Komljenovic I., Vocadlo D.J., Brock H.W., Honda B.M. Drosophila O-GlcNAc transferase (OGT) is encoded by the polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. U. S. A. 2009, 106:13427-13432.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 13427-13432
-
-
Sinclair, D.A.1
Syrzycka, M.2
Macauley, M.S.3
Rastgardani, T.4
Komljenovic, I.5
Vocadlo, D.J.6
Brock, H.W.7
Honda, B.M.8
-
26
-
-
84880648662
-
O-GlcNAc cycling: a link between metabolism and chronic disease
-
Bond M.R., Hanover J.A. O-GlcNAc cycling: a link between metabolism and chronic disease. Annu. Rev. Nutr. 2013, 33:205-229.
-
(2013)
Annu. Rev. Nutr.
, vol.33
, pp. 205-229
-
-
Bond, M.R.1
Hanover, J.A.2
-
27
-
-
77955273167
-
O-GlcNAc cycling: emerging roles in development and epigenetics
-
Love D.C., Krause M.W., Hanover J.A. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin. Cell Dev. Biol. 2010, 21:646-654.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 646-654
-
-
Love, D.C.1
Krause, M.W.2
Hanover, J.A.3
-
28
-
-
77956396629
-
O-GlcNAc signaling: a metabolic link between diabetes and cancer?
-
Slawson C., Copeland R.J., Hart G.W. O-GlcNAc signaling: a metabolic link between diabetes and cancer?. Trends Biochem. Sci. 2010, 35:547-555.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 547-555
-
-
Slawson, C.1
Copeland, R.J.2
Hart, G.W.3
-
29
-
-
80052068559
-
O-GlcNAc signalling: implications for cancer cell biology
-
Slawson C., Hart G.W. O-GlcNAc signalling: implications for cancer cell biology. Nat. Rev. Cancer 2011, 11:678-684.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 678-684
-
-
Slawson, C.1
Hart, G.W.2
-
30
-
-
82955207588
-
Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
-
Wu H., Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011, 25:2436-2452.
-
(2011)
Genes Dev.
, vol.25
, pp. 2436-2452
-
-
Wu, H.1
Zhang, Y.2
-
31
-
-
84872953223
-
TET2 promotes histone O-GlcNAcylation during gene transcription
-
Chen Q., Chen Y., Bian C., Fujiki R., Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 2013, 493:561-564.
-
(2013)
Nature
, vol.493
, pp. 561-564
-
-
Chen, Q.1
Chen, Y.2
Bian, C.3
Fujiki, R.4
Yu, X.5
-
32
-
-
84875218124
-
TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS
-
Deplus R., Delatte B., Schwinn M.K., Defrance M., Mendez J., Murphy N., Dawson M.A., Volkmar M., Putmans P., Calonne E., Shih A.H., Levine R.L., Bernard O., Mercher T., Solary E., Urh M., Daniels D.L., Fuks F. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013, 32:645-655.
-
(2013)
EMBO J.
, vol.32
, pp. 645-655
-
-
Deplus, R.1
Delatte, B.2
Schwinn, M.K.3
Defrance, M.4
Mendez, J.5
Murphy, N.6
Dawson, M.A.7
Volkmar, M.8
Putmans, P.9
Calonne, E.10
Shih, A.H.11
Levine, R.L.12
Bernard, O.13
Mercher, T.14
Solary, E.15
Urh, M.16
Daniels, D.L.17
Fuks, F.18
-
33
-
-
84874266225
-
Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells
-
Vella P., Scelfo A., Jammula S., Chiacchiera F., Williams K., Cuomo A., Roberto A., Christensen J., Bonaldi T., Helin K., Pasini D. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol. Cell 2013, 49:645-656.
-
(2013)
Mol. Cell
, vol.49
, pp. 645-656
-
-
Vella, P.1
Scelfo, A.2
Jammula, S.3
Chiacchiera, F.4
Williams, K.5
Cuomo, A.6
Roberto, A.7
Christensen, J.8
Bonaldi, T.9
Helin, K.10
Pasini, D.11
-
34
-
-
0036290413
-
Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase
-
Konrad R.J., Zhang F., Hale J.E., Knierman M.D., Becker G.W., Kudlow J.E. Alloxan is an inhibitor of the enzyme O-linked N-acetylglucosamine transferase. Biochem. Biophys. Res. Commun. 2002, 293:207-212.
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.293
, pp. 207-212
-
-
Konrad, R.J.1
Zhang, F.2
Hale, J.E.3
Knierman, M.D.4
Becker, G.W.5
Kudlow, J.E.6
-
35
-
-
33750090697
-
Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase
-
Lee T.N., Alborn W.E., Knierman M.D., Konrad R.J. Alloxan is an inhibitor of O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem. Biophys. Res. Commun. 2006, 350:1038-1043.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.350
, pp. 1038-1043
-
-
Lee, T.N.1
Alborn, W.E.2
Knierman, M.D.3
Konrad, R.J.4
-
36
-
-
67349189942
-
GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis
-
Fujiki R., Chikanishi T., Hashiba W., Ito H., Takada I., Roeder R.G., Kitagawa H., Kato S. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 2009, 459:455-459.
-
(2009)
Nature
, vol.459
, pp. 455-459
-
-
Fujiki, R.1
Chikanishi, T.2
Hashiba, W.3
Ito, H.4
Takada, I.5
Roeder, R.G.6
Kitagawa, H.7
Kato, S.8
-
37
-
-
84355161950
-
GlcNAcylation of histone H2B facilitates its monoubiquitination
-
Fujiki R., Hashiba W., Sekine H., Yokoyama A., Chikanishi T., Ito S., Imai Y., Kim J., He H.H., Igarashi K., Kanno J., Ohtake F., Kitagawa H., Roeder R.G., Brown M., Kato S. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 2011, 480:557-560.
-
(2011)
Nature
, vol.480
, pp. 557-560
-
-
Fujiki, R.1
Hashiba, W.2
Sekine, H.3
Yokoyama, A.4
Chikanishi, T.5
Ito, S.6
Imai, Y.7
Kim, J.8
He, H.H.9
Igarashi, K.10
Kanno, J.11
Ohtake, F.12
Kitagawa, H.13
Roeder, R.G.14
Brown, M.15
Kato, S.16
-
38
-
-
78049390185
-
O-GlcNAc transferase regulates mitotic chromatin dynamics
-
Sakabe K., Hart G.W. O-GlcNAc transferase regulates mitotic chromatin dynamics. J. Biol. Chem. 2010, 285:34460-34468.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 34460-34468
-
-
Sakabe, K.1
Hart, G.W.2
-
39
-
-
84859512121
-
Beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3
-
Fong J.J., Nguyen B.L., Bridger R., Medrano E.E., Wells L., Pan S., Sifers R.N. Beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J. Biol. Chem. 2012, 287:12195-12203.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 12195-12203
-
-
Fong, J.J.1
Nguyen, B.L.2
Bridger, R.3
Medrano, E.E.4
Wells, L.5
Pan, S.6
Sifers, R.N.7
-
40
-
-
80054818714
-
Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated
-
Zhang S., Roche K., Nasheuer H.P., Lowndes N.F. Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 2011, 286:37483-37495.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 37483-37495
-
-
Zhang, S.1
Roche, K.2
Nasheuer, H.P.3
Lowndes, N.F.4
-
41
-
-
78650447665
-
Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code
-
Sakabe K., Wang Z., Hart G.W. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:19915-19920.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 19915-19920
-
-
Sakabe, K.1
Wang, Z.2
Hart, G.W.3
-
42
-
-
77958504804
-
Clocks not winding down: unravelling circadian networks
-
Zhang E.E., Kay S.A. Clocks not winding down: unravelling circadian networks. Nat. Rev. Mol. Cell Biol. 2010, 11:764-776.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 764-776
-
-
Zhang, E.E.1
Kay, S.A.2
-
43
-
-
84880026907
-
Circadian clocks and metabolism
-
Marcheva B., Ramsey K.M., Peek C.B., Affinati A., Maury E., Bass J. Circadian clocks and metabolism. Handb. Exp. Pharmacol. 2013, 127-155.
-
(2013)
Handb. Exp. Pharmacol.
, pp. 127-155
-
-
Marcheva, B.1
Ramsey, K.M.2
Peek, C.B.3
Affinati, A.4
Maury, E.5
Bass, J.6
-
44
-
-
84858172824
-
(Re)inventing the circadian feedback loop
-
Brown S.A., Kowalska E., Dallmann R. (Re)inventing the circadian feedback loop. Dev. Cell 2012, 22:477-487.
-
(2012)
Dev. Cell
, vol.22
, pp. 477-487
-
-
Brown, S.A.1
Kowalska, E.2
Dallmann, R.3
-
45
-
-
23844460834
-
A role for glycogen synthase kinase-3beta in the mammalian circadian clock
-
Iitaka C., Miyazaki K., Akaike T., Ishida N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J. Biol. Chem. 2005, 280:29397-29402.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 29397-29402
-
-
Iitaka, C.1
Miyazaki, K.2
Akaike, T.3
Ishida, N.4
-
46
-
-
0035875069
-
A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock
-
Martinek S., Inonog S., Manoukian A.S., Young M.W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 2001, 105:769-779.
-
(2001)
Cell
, vol.105
, pp. 769-779
-
-
Martinek, S.1
Inonog, S.2
Manoukian, A.S.3
Young, M.W.4
-
47
-
-
0034646669
-
Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity
-
Lubas W.A., Hanover J.A. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem. 2000, 275:10983-10988.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 10983-10988
-
-
Lubas, W.A.1
Hanover, J.A.2
-
48
-
-
84873351364
-
Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
-
Kaasik K., Kivimae S., Allen J.J., Chalkley R.J., Huang Y., Baer K., Kissel H., Burlingame A.L., Shokat K.M., Ptacek L.J., Fu Y.H. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 2013, 17:291-302.
-
(2013)
Cell Metab.
, vol.17
, pp. 291-302
-
-
Kaasik, K.1
Kivimae, S.2
Allen, J.J.3
Chalkley, R.J.4
Huang, Y.5
Baer, K.6
Kissel, H.7
Burlingame, A.L.8
Shokat, K.M.9
Ptacek, L.J.10
Fu, Y.H.11
-
49
-
-
84863230299
-
A role for O-GlcNAcylation in setting circadian clock speed
-
Kim E.Y., Jeong E.H., Park S., Jeong H.J., Edery I., Cho J.W. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 2012, 26:490-502.
-
(2012)
Genes Dev.
, vol.26
, pp. 490-502
-
-
Kim, E.Y.1
Jeong, E.H.2
Park, S.3
Jeong, H.J.4
Edery, I.5
Cho, J.W.6
-
50
-
-
84873362932
-
O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
-
Li M.D., Ruan H.B., Hughes M.E., Lee J.S., Singh J.P., Jones S.P., Nitabach M.N., Yang X. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 2013, 17:303-310.
-
(2013)
Cell Metab.
, vol.17
, pp. 303-310
-
-
Li, M.D.1
Ruan, H.B.2
Hughes, M.E.3
Lee, J.S.4
Singh, J.P.5
Jones, S.P.6
Nitabach, M.N.7
Yang, X.8
-
51
-
-
59149086433
-
Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice
-
Okano S., Akashi M., Hayasaka K., Nakajima O. Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice. Neurosci. Lett. 2009, 451:246-251.
-
(2009)
Neurosci. Lett.
, vol.451
, pp. 246-251
-
-
Okano, S.1
Akashi, M.2
Hayasaka, K.3
Nakajima, O.4
-
52
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic R.D., McNamara P., Curtis A.M., Boston R.C., Panda S., Hogenesch J.B., Fitzgerald G.A. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004, 2:e377.
-
(2004)
PLoS Biol.
, vol.2
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
Boston, R.C.4
Panda, S.5
Hogenesch, J.B.6
Fitzgerald, G.A.7
-
53
-
-
0026672986
-
The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa
-
Chesnut J.D., Stephens J.H., Dahmus M.E. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. J. Biol. Chem. 1992, 267:10500-10506.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 10500-10506
-
-
Chesnut, J.D.1
Stephens, J.H.2
Dahmus, M.E.3
-
54
-
-
37249015899
-
Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7
-
Chapman R.D., Heidemann M., Albert T.K., Mailhammer R., Flatley A., Meisterernst M., Kremmer E., Eick D. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 2007, 318:1780-1782.
-
(2007)
Science
, vol.318
, pp. 1780-1782
-
-
Chapman, R.D.1
Heidemann, M.2
Albert, T.K.3
Mailhammer, R.4
Flatley, A.5
Meisterernst, M.6
Kremmer, E.7
Eick, D.8
-
55
-
-
84862493306
-
Updating the RNA polymerase CTD code: adding gene-specific layers
-
Egloff S., Dienstbier M., Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 2012, 28:333-341.
-
(2012)
Trends Genet.
, vol.28
, pp. 333-341
-
-
Egloff, S.1
Dienstbier, M.2
Murphy, S.3
-
56
-
-
84862206497
-
Threonine-4 of mammalian RNA polymerase II CTD is targeted by polo-like kinase 3 and required for transcriptional elongation
-
Hintermair C., Heidemann M., Koch F., Descostes N., Gut M., Gut I., Fenouil R., Ferrier P., Flatley A., Kremmer E., Chapman R.D., Andrau J.C., Eick D. Threonine-4 of mammalian RNA polymerase II CTD is targeted by polo-like kinase 3 and required for transcriptional elongation. EMBO J. 2012, 31:2784-2797.
-
(2012)
EMBO J.
, vol.31
, pp. 2784-2797
-
-
Hintermair, C.1
Heidemann, M.2
Koch, F.3
Descostes, N.4
Gut, M.5
Gut, I.6
Fenouil, R.7
Ferrier, P.8
Flatley, A.9
Kremmer, E.10
Chapman, R.D.11
Andrau, J.C.12
Eick, D.13
-
57
-
-
80555125095
-
RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing
-
Hsin J.P., Sheth A., Manley J.L. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Science 2011, 334:683-686.
-
(2011)
Science
, vol.334
, pp. 683-686
-
-
Hsin, J.P.1
Sheth, A.2
Manley, J.L.3
-
58
-
-
44149094965
-
Molecular evolution of the RNA polymerase II CTD
-
Chapman R.D., Heidemann M., Hintermair C., Eick D. Molecular evolution of the RNA polymerase II CTD. Trends Genet. 2008, 24:289-296.
-
(2008)
Trends Genet.
, vol.24
, pp. 289-296
-
-
Chapman, R.D.1
Heidemann, M.2
Hintermair, C.3
Eick, D.4
-
59
-
-
25144517809
-
Transition from initiation to promoter proximal pausing requires the CTD of RNA polymerase II
-
Lux C., Albiez H., Chapman R.D., Heidinger M., Meininghaus M., Brack-Werner R., Lang A., Ziegler M., Cremer T., Eick D. Transition from initiation to promoter proximal pausing requires the CTD of RNA polymerase II. Nucleic Acids Res. 2005, 33:5139-5144.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 5139-5144
-
-
Lux, C.1
Albiez, H.2
Chapman, R.D.3
Heidinger, M.4
Meininghaus, M.5
Brack-Werner, R.6
Lang, A.7
Ziegler, M.8
Cremer, T.9
Eick, D.10
-
60
-
-
0036606879
-
Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation
-
Naar A.M., Taatjes D.J., Zhai W., Nogales E., Tjian R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 2002, 16:1339-1344.
-
(2002)
Genes Dev.
, vol.16
, pp. 1339-1344
-
-
Naar, A.M.1
Taatjes, D.J.2
Zhai, W.3
Nogales, E.4
Tjian, R.5
-
61
-
-
0037039776
-
Structure, function, and activator-induced conformations of the CRSP coactivator
-
Taatjes D.J., Naar A.M., Andel F., Nogales E., Tjian R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 2002, 295:1058-1062.
-
(2002)
Science
, vol.295
, pp. 1058-1062
-
-
Taatjes, D.J.1
Naar, A.M.2
Andel, F.3
Nogales, E.4
Tjian, R.5
-
62
-
-
70449641057
-
Progression through the RNA polymerase II CTD cycle
-
Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 2009, 36:541-546.
-
(2009)
Mol. Cell
, vol.36
, pp. 541-546
-
-
Buratowski, S.1
-
63
-
-
33751090746
-
Phosphorylation and functions of the RNA polymerase II CTD
-
Phatnani H.P., Greenleaf A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 2006, 20:2922-2936.
-
(2006)
Genes Dev.
, vol.20
, pp. 2922-2936
-
-
Phatnani, H.P.1
Greenleaf, A.L.2
-
65
-
-
0031035486
-
Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription
-
Gebara M.M., Sayre M.H., Corden J.L. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J. Cell. Biochem. 1997, 64:390-402.
-
(1997)
J. Cell. Biochem.
, vol.64
, pp. 390-402
-
-
Gebara, M.M.1
Sayre, M.H.2
Corden, J.L.3
-
67
-
-
84871441895
-
Emerging views on the CTD code
-
Zhang D.W., Rodriguez-Molina J.B., Tietjen J.R., Nemec C.M., Ansari A.Z. Emerging views on the CTD code. Genet. Res. Int. 2012, 2012:347214.
-
(2012)
Genet. Res. Int.
, vol.2012
, pp. 347214
-
-
Zhang, D.W.1
Rodriguez-Molina, J.B.2
Tietjen, J.R.3
Nemec, C.M.4
Ansari, A.Z.5
-
68
-
-
0027289130
-
RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc
-
Kelly W.G., Dahmus M.E., Hart G.W. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 1993, 268:10416-10424.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 10416-10424
-
-
Kelly, W.G.1
Dahmus, M.E.2
Hart, G.W.3
-
69
-
-
0035800086
-
Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II
-
Comer F.I., Hart G.W. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 2001, 40:7845-7852.
-
(2001)
Biochemistry
, vol.40
, pp. 7845-7852
-
-
Comer, F.I.1
Hart, G.W.2
-
70
-
-
84863610013
-
Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo
-
Ranuncolo S.M., Ghosh S., Hanover J.A., Hart G.W., Lewis B.A. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J. Biol. Chem. 2012, 287:23549-23561.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 23549-23561
-
-
Ranuncolo, S.M.1
Ghosh, S.2
Hanover, J.A.3
Hart, G.W.4
Lewis, B.A.5
|