메뉴 건너뛰기




Volumn 1829, Issue 11, 2013, Pages 1202-1206

O-GlcNAcylation at promoters, nutrient sensors, and transcriptional regulation

Author keywords

Nutrient sensor; O GlcNAc; RNA polymerase II; Transcription

Indexed keywords

ADENOSINE TRIPHOSPHATE; N ACETYLGLUCOSAMINE; RNA POLYMERASE II; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR CLOCK; URIDINE DIPHOSPHATE;

EID: 84885044676     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2013.09.003     Document Type: Review
Times cited : (24)

References (70)
  • 1
    • 0004106191 scopus 로고    scopus 로고
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
    • Varki A. Essentials of Glycobiology 2009, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 2nd ed.
    • (2009) Essentials of Glycobiology
    • Varki, A.1
  • 2
    • 79959381299 scopus 로고    scopus 로고
    • Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease
    • Hart G.W., Slawson C., Ramirez-Correa G., Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 2011, 80:825-858.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 825-858
    • Hart, G.W.1    Slawson, C.2    Ramirez-Correa, G.3    Lagerlof, O.4
  • 4
    • 77949295164 scopus 로고    scopus 로고
    • The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine
    • Hanover J.A., Krause M.W., Love D.C. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta 2010, 1800:80-95.
    • (2010) Biochim. Biophys. Acta , vol.1800 , pp. 80-95
    • Hanover, J.A.1    Krause, M.W.2    Love, D.C.3
  • 5
    • 0025855139 scopus 로고
    • Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance
    • Marshall S., Bacote V., Traxinger R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 1991, 266:4706-4712.
    • (1991) J. Biol. Chem. , vol.266 , pp. 4706-4712
    • Marshall, S.1    Bacote, V.2    Traxinger, R.R.3
  • 7
    • 0034854157 scopus 로고    scopus 로고
    • Glycan-dependent signaling: O-linked N-acetylglucosamine
    • Hanover J.A. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 2001, 15:1865-1876.
    • (2001) FASEB J. , vol.15 , pp. 1865-1876
    • Hanover, J.A.1
  • 8
    • 67649874094 scopus 로고    scopus 로고
    • The O-GlcNAc Modification
    • Cold Spring, Harbor (NY), A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, M.E. Etzler (Eds.)
    • Hart G.W., Akimoto Y. The O-GlcNAc Modification. Essentials of Glycobiology 2009, Cold Spring, Harbor (NY). A. Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, M.E. Etzler (Eds.).
    • (2009) Essentials of Glycobiology
    • Hart, G.W.1    Akimoto, Y.2
  • 10
    • 77954308587 scopus 로고    scopus 로고
    • Increased expression of beta-N-acetylglucosaminidase in erythrocytes from individuals with pre-diabetes and diabetes
    • Park K., Saudek C.D., Hart G.W. Increased expression of beta-N-acetylglucosaminidase in erythrocytes from individuals with pre-diabetes and diabetes. Diabetes 2010, 59:1845-1850.
    • (2010) Diabetes , vol.59 , pp. 1845-1850
    • Park, K.1    Saudek, C.D.2    Hart, G.W.3
  • 11
    • 0030925291 scopus 로고    scopus 로고
    • Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin sensitive tissues
    • Virkamaki A., Daniels M.C., Hamalainen S., Utriainen T., McClain D., Yki-Jarvinen H. Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin sensitive tissues. Endocrinology 1997, 138:2501-2507.
    • (1997) Endocrinology , vol.138 , pp. 2501-2507
    • Virkamaki, A.1    Daniels, M.C.2    Hamalainen, S.3    Utriainen, T.4    McClain, D.5    Yki-Jarvinen, H.6
  • 12
    • 52049120841 scopus 로고    scopus 로고
    • Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling
    • Whelan S.A., Lane M.D., Hart G.W. Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J. Biol. Chem. 2008, 283:21411-21417.
    • (2008) J. Biol. Chem. , vol.283 , pp. 21411-21417
    • Whelan, S.A.1    Lane, M.D.2    Hart, G.W.3
  • 14
    • 77949332132 scopus 로고    scopus 로고
    • Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes
    • Whelan S.A., Dias W.B., Thiruneelakantapillai L., Lane M.D., Hart G.W. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J. Biol. Chem. 2010, 285:5204-5211.
    • (2010) J. Biol. Chem. , vol.285 , pp. 5204-5211
    • Whelan, S.A.1    Dias, W.B.2    Thiruneelakantapillai, L.3    Lane, M.D.4    Hart, G.W.5
  • 15
  • 17
    • 40449128605 scopus 로고    scopus 로고
    • Hepatic glucose sensing via the CREB coactivator CRTC2
    • Dentin R., Hedrick S., Xie J., Yates J., Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science 2008, 319:1402-1405.
    • (2008) Science , vol.319 , pp. 1402-1405
    • Dentin, R.1    Hedrick, S.2    Xie, J.3    Yates, J.4    Montminy, M.5
  • 18
    • 33747081065 scopus 로고    scopus 로고
    • Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer
    • Forsythe M.E., Love D.C., Lazarus B.D., Kim E.J., Prinz W.A., Ashwell G., Krause M.W., Hanover J.A. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:11952-11957.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 11952-11957
    • Forsythe, M.E.1    Love, D.C.2    Lazarus, B.D.3    Kim, E.J.4    Prinz, W.A.5    Ashwell, G.6    Krause, M.W.7    Hanover, J.A.8
  • 21
    • 78649640325 scopus 로고    scopus 로고
    • Blocking O-Linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis
    • Sekine O., Love D.C., Rubenstein D.S., Hanover J.A. Blocking O-Linked GlcNAc cycling in Drosophila insulin-producing cells perturbs glucose-insulin homeostasis. J. Biol. Chem. 2010, 285:38684-38691.
    • (2010) J. Biol. Chem. , vol.285 , pp. 38684-38691
    • Sekine, O.1    Love, D.C.2    Rubenstein, D.S.3    Hanover, J.A.4
  • 22
    • 0037067659 scopus 로고    scopus 로고
    • Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression
    • Yang X., Zhang F., Kudlow J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 2002, 110:69-80.
    • (2002) Cell , vol.110 , pp. 69-80
    • Yang, X.1    Zhang, F.2    Kudlow, J.E.3
  • 23
    • 67650076327 scopus 로고    scopus 로고
    • Essential role of the glycosyltransferase Sxc/Ogt in polycomb repression
    • Gambetta M.C., Oktaba K., Müller J. Essential role of the glycosyltransferase Sxc/Ogt in polycomb repression. Science 2009, 325:93-96.
    • (2009) Science , vol.325 , pp. 93-96
    • Gambetta, M.C.1    Oktaba, K.2    Müller, J.3
  • 24
    • 79959334683 scopus 로고    scopus 로고
    • Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells
    • Myers S.A., Panning B., Burlingame A.L. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:9490-9495.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 9490-9495
    • Myers, S.A.1    Panning, B.2    Burlingame, A.L.3
  • 26
    • 84880648662 scopus 로고    scopus 로고
    • O-GlcNAc cycling: a link between metabolism and chronic disease
    • Bond M.R., Hanover J.A. O-GlcNAc cycling: a link between metabolism and chronic disease. Annu. Rev. Nutr. 2013, 33:205-229.
    • (2013) Annu. Rev. Nutr. , vol.33 , pp. 205-229
    • Bond, M.R.1    Hanover, J.A.2
  • 27
    • 77955273167 scopus 로고    scopus 로고
    • O-GlcNAc cycling: emerging roles in development and epigenetics
    • Love D.C., Krause M.W., Hanover J.A. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin. Cell Dev. Biol. 2010, 21:646-654.
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 646-654
    • Love, D.C.1    Krause, M.W.2    Hanover, J.A.3
  • 28
    • 77956396629 scopus 로고    scopus 로고
    • O-GlcNAc signaling: a metabolic link between diabetes and cancer?
    • Slawson C., Copeland R.J., Hart G.W. O-GlcNAc signaling: a metabolic link between diabetes and cancer?. Trends Biochem. Sci. 2010, 35:547-555.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 547-555
    • Slawson, C.1    Copeland, R.J.2    Hart, G.W.3
  • 29
    • 80052068559 scopus 로고    scopus 로고
    • O-GlcNAc signalling: implications for cancer cell biology
    • Slawson C., Hart G.W. O-GlcNAc signalling: implications for cancer cell biology. Nat. Rev. Cancer 2011, 11:678-684.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 678-684
    • Slawson, C.1    Hart, G.W.2
  • 30
    • 82955207588 scopus 로고    scopus 로고
    • Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
    • Wu H., Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011, 25:2436-2452.
    • (2011) Genes Dev. , vol.25 , pp. 2436-2452
    • Wu, H.1    Zhang, Y.2
  • 31
    • 84872953223 scopus 로고    scopus 로고
    • TET2 promotes histone O-GlcNAcylation during gene transcription
    • Chen Q., Chen Y., Bian C., Fujiki R., Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 2013, 493:561-564.
    • (2013) Nature , vol.493 , pp. 561-564
    • Chen, Q.1    Chen, Y.2    Bian, C.3    Fujiki, R.4    Yu, X.5
  • 35
  • 38
    • 78049390185 scopus 로고    scopus 로고
    • O-GlcNAc transferase regulates mitotic chromatin dynamics
    • Sakabe K., Hart G.W. O-GlcNAc transferase regulates mitotic chromatin dynamics. J. Biol. Chem. 2010, 285:34460-34468.
    • (2010) J. Biol. Chem. , vol.285 , pp. 34460-34468
    • Sakabe, K.1    Hart, G.W.2
  • 39
    • 84859512121 scopus 로고    scopus 로고
    • Beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3
    • Fong J.J., Nguyen B.L., Bridger R., Medrano E.E., Wells L., Pan S., Sifers R.N. Beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J. Biol. Chem. 2012, 287:12195-12203.
    • (2012) J. Biol. Chem. , vol.287 , pp. 12195-12203
    • Fong, J.J.1    Nguyen, B.L.2    Bridger, R.3    Medrano, E.E.4    Wells, L.5    Pan, S.6    Sifers, R.N.7
  • 40
    • 80054818714 scopus 로고    scopus 로고
    • Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated
    • Zhang S., Roche K., Nasheuer H.P., Lowndes N.F. Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 2011, 286:37483-37495.
    • (2011) J. Biol. Chem. , vol.286 , pp. 37483-37495
    • Zhang, S.1    Roche, K.2    Nasheuer, H.P.3    Lowndes, N.F.4
  • 41
    • 78650447665 scopus 로고    scopus 로고
    • Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code
    • Sakabe K., Wang Z., Hart G.W. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:19915-19920.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 19915-19920
    • Sakabe, K.1    Wang, Z.2    Hart, G.W.3
  • 42
    • 77958504804 scopus 로고    scopus 로고
    • Clocks not winding down: unravelling circadian networks
    • Zhang E.E., Kay S.A. Clocks not winding down: unravelling circadian networks. Nat. Rev. Mol. Cell Biol. 2010, 11:764-776.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 764-776
    • Zhang, E.E.1    Kay, S.A.2
  • 44
    • 84858172824 scopus 로고    scopus 로고
    • (Re)inventing the circadian feedback loop
    • Brown S.A., Kowalska E., Dallmann R. (Re)inventing the circadian feedback loop. Dev. Cell 2012, 22:477-487.
    • (2012) Dev. Cell , vol.22 , pp. 477-487
    • Brown, S.A.1    Kowalska, E.2    Dallmann, R.3
  • 45
    • 23844460834 scopus 로고    scopus 로고
    • A role for glycogen synthase kinase-3beta in the mammalian circadian clock
    • Iitaka C., Miyazaki K., Akaike T., Ishida N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J. Biol. Chem. 2005, 280:29397-29402.
    • (2005) J. Biol. Chem. , vol.280 , pp. 29397-29402
    • Iitaka, C.1    Miyazaki, K.2    Akaike, T.3    Ishida, N.4
  • 46
    • 0035875069 scopus 로고    scopus 로고
    • A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock
    • Martinek S., Inonog S., Manoukian A.S., Young M.W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 2001, 105:769-779.
    • (2001) Cell , vol.105 , pp. 769-779
    • Martinek, S.1    Inonog, S.2    Manoukian, A.S.3    Young, M.W.4
  • 47
    • 0034646669 scopus 로고    scopus 로고
    • Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity
    • Lubas W.A., Hanover J.A. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem. 2000, 275:10983-10988.
    • (2000) J. Biol. Chem. , vol.275 , pp. 10983-10988
    • Lubas, W.A.1    Hanover, J.A.2
  • 51
    • 59149086433 scopus 로고    scopus 로고
    • Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice
    • Okano S., Akashi M., Hayasaka K., Nakajima O. Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice. Neurosci. Lett. 2009, 451:246-251.
    • (2009) Neurosci. Lett. , vol.451 , pp. 246-251
    • Okano, S.1    Akashi, M.2    Hayasaka, K.3    Nakajima, O.4
  • 53
    • 0026672986 scopus 로고
    • The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa
    • Chesnut J.D., Stephens J.H., Dahmus M.E. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. J. Biol. Chem. 1992, 267:10500-10506.
    • (1992) J. Biol. Chem. , vol.267 , pp. 10500-10506
    • Chesnut, J.D.1    Stephens, J.H.2    Dahmus, M.E.3
  • 55
    • 84862493306 scopus 로고    scopus 로고
    • Updating the RNA polymerase CTD code: adding gene-specific layers
    • Egloff S., Dienstbier M., Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 2012, 28:333-341.
    • (2012) Trends Genet. , vol.28 , pp. 333-341
    • Egloff, S.1    Dienstbier, M.2    Murphy, S.3
  • 57
    • 80555125095 scopus 로고    scopus 로고
    • RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing
    • Hsin J.P., Sheth A., Manley J.L. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Science 2011, 334:683-686.
    • (2011) Science , vol.334 , pp. 683-686
    • Hsin, J.P.1    Sheth, A.2    Manley, J.L.3
  • 60
    • 0036606879 scopus 로고    scopus 로고
    • Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation
    • Naar A.M., Taatjes D.J., Zhai W., Nogales E., Tjian R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 2002, 16:1339-1344.
    • (2002) Genes Dev. , vol.16 , pp. 1339-1344
    • Naar, A.M.1    Taatjes, D.J.2    Zhai, W.3    Nogales, E.4    Tjian, R.5
  • 61
    • 0037039776 scopus 로고    scopus 로고
    • Structure, function, and activator-induced conformations of the CRSP coactivator
    • Taatjes D.J., Naar A.M., Andel F., Nogales E., Tjian R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 2002, 295:1058-1062.
    • (2002) Science , vol.295 , pp. 1058-1062
    • Taatjes, D.J.1    Naar, A.M.2    Andel, F.3    Nogales, E.4    Tjian, R.5
  • 62
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 2009, 36:541-546.
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 63
    • 33751090746 scopus 로고    scopus 로고
    • Phosphorylation and functions of the RNA polymerase II CTD
    • Phatnani H.P., Greenleaf A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 2006, 20:2922-2936.
    • (2006) Genes Dev. , vol.20 , pp. 2922-2936
    • Phatnani, H.P.1    Greenleaf, A.L.2
  • 64
    • 84861857476 scopus 로고    scopus 로고
    • RNA polymerase II elongation control
    • Zhou Q., Li T., Price D.H. RNA polymerase II elongation control. Annu. Rev. Biochem. 2012, 81:119-143.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 119-143
    • Zhou, Q.1    Li, T.2    Price, D.H.3
  • 65
    • 0031035486 scopus 로고    scopus 로고
    • Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription
    • Gebara M.M., Sayre M.H., Corden J.L. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J. Cell. Biochem. 1997, 64:390-402.
    • (1997) J. Cell. Biochem. , vol.64 , pp. 390-402
    • Gebara, M.M.1    Sayre, M.H.2    Corden, J.L.3
  • 68
    • 0027289130 scopus 로고
    • RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc
    • Kelly W.G., Dahmus M.E., Hart G.W. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 1993, 268:10416-10424.
    • (1993) J. Biol. Chem. , vol.268 , pp. 10416-10424
    • Kelly, W.G.1    Dahmus, M.E.2    Hart, G.W.3
  • 69
    • 0035800086 scopus 로고    scopus 로고
    • Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II
    • Comer F.I., Hart G.W. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 2001, 40:7845-7852.
    • (2001) Biochemistry , vol.40 , pp. 7845-7852
    • Comer, F.I.1    Hart, G.W.2
  • 70
    • 84863610013 scopus 로고    scopus 로고
    • Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo
    • Ranuncolo S.M., Ghosh S., Hanover J.A., Hart G.W., Lewis B.A. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J. Biol. Chem. 2012, 287:23549-23561.
    • (2012) J. Biol. Chem. , vol.287 , pp. 23549-23561
    • Ranuncolo, S.M.1    Ghosh, S.2    Hanover, J.A.3    Hart, G.W.4    Lewis, B.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.