메뉴 건너뛰기




Volumn 80, Issue 1, 2014, Pages 118-136

Discovering gene association networks by multi-objective evolutionary quantitative association rules

Author keywords

Data mining; Gene networks; Microarray analysis; Multi objective evolutionary algorithms; Quantitative association rules

Indexed keywords

ASSOCIATION RULES; BENCHMARKING; DATA MINING; GARNETS; GENE EXPRESSION;

EID: 84884975038     PISSN: 00220000     EISSN: 10902724     Source Type: Journal    
DOI: 10.1016/j.jcss.2013.03.010     Document Type: Conference Paper
Times cited : (24)

References (67)
  • 1
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • P. Brown, and D. Botstein Exploring the new world of the genome with DNA microarrays Nat. Genet. 21 1999 33 37
    • (1999) Nat. Genet. , vol.21 , pp. 33-37
    • Brown, P.1    Botstein, D.2
  • 6
    • 2942547409 scopus 로고    scopus 로고
    • Spea2: Improving the strength Pareto evolutionary algorithm
    • E. Zitzler, M. Laumanns, and L. Thiele Spea2: improving the strength Pareto evolutionary algorithm EUROGEN 3242 2001 95 100
    • (2001) EUROGEN , vol.3242 , pp. 95-100
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 7
    • 58049200709 scopus 로고    scopus 로고
    • Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems
    • M.J. Gacto, R. Alcalá, and F. Herrera Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems Soft Comput. 13 2009 419 436
    • (2009) Soft Comput. , vol.13 , pp. 419-436
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 8
    • 72749107544 scopus 로고    scopus 로고
    • Mining gene network by combined association rules and genetic algorithm
    • W. Liao, Y. Fang, C. Zhu, O.C. Au, IEEE Computer Society Washington, DC
    • F. Du, N. Rao, J. Guo, Z. Yuan, and R. Wang Mining gene network by combined association rules and genetic algorithm W. Liao, Y. Fang, C. Zhu, O.C. Au, Proceedings of the Int. Conf. on Communications, Circuits and Systems 2009 IEEE Computer Society Washington, DC
    • (2009) Proceedings of the Int. Conf. on Communications, Circuits and Systems
    • Du, F.1    Rao, N.2    Guo, J.3    Yuan, Z.4    Wang, R.5
  • 9
    • 0037270514 scopus 로고    scopus 로고
    • Towards reconstruction of gene networks from expression data by supervised learning
    • L. Soinov, M. Krestyaninova, and A. Brazma Towards reconstruction of gene networks from expression data by supervised learning Genome Biol. 4 2003 R6
    • (2003) Genome Biol. , vol.4 , pp. 6
    • Soinov, L.1    Krestyaninova, M.2    Brazma, A.3
  • 10
    • 20744440332 scopus 로고    scopus 로고
    • Inferring genetic regulatory logic from expression data
    • S. Bulashevska, and R. Eils Inferring genetic regulatory logic from expression data Bioinformatics 21 2005 2706 2713
    • (2005) Bioinformatics , vol.21 , pp. 2706-2713
    • Bulashevska, S.1    Eils, R.2
  • 11
    • 36248985095 scopus 로고    scopus 로고
    • Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning
    • I. Ponzoni, F.A. Azuaje, and D. Juan Glass Inferring adaptive regulation thresholds and association rules from gene expression data through combinatorial optimization learning IEEE/ACM Trans. Comput. Biol. Bioinform. 4 2007 624 634
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.4 , pp. 624-634
    • Ponzoni, I.1    Azuaje, F.A.2    Juan Glass, D.3
  • 12
    • 79955126373 scopus 로고    scopus 로고
    • Discovering time-lagged rules from microarray data using gene profile classifiers
    • C.A. Gallo, J.A. Carballido, and I. Ponzoni Discovering time-lagged rules from microarray data using gene profile classifiers BMC Bioinformatics 12 2011 123 131
    • (2011) BMC Bioinformatics , vol.12 , pp. 123-131
    • Gallo, C.A.1    Carballido, J.A.2    Ponzoni, I.3
  • 13
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown, D. Botstein, and B. Futcher Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Mol. Biol. Cell. 9 1998 3273 3297
    • (1998) Mol. Biol. Cell. , vol.9 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3    Iyer, V.4    Anders, K.5    Eisen, M.6    Brown, P.7    Botstein, D.8    Futcher, B.9
  • 16
    • 0036790999 scopus 로고    scopus 로고
    • From the cover: Transitive functional annotation by shortest-path analysis of gene expression data
    • X. Zhou, M. Kao, and W. Wong From the cover: transitive functional annotation by shortest-path analysis of gene expression data Proc. Natl. Acad. Sci. 99 2002 12783 12788
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , pp. 12783-12788
    • Zhou, X.1    Kao, M.2    Wong, W.3
  • 17
    • 3042514191 scopus 로고    scopus 로고
    • Coexpression analysis of human genes across many microarray data sets
    • H.K. Lee, A.K. Hsu, J. Sajdak, J. Qin, and P. Pavlidis Coexpression analysis of human genes across many microarray data sets Genome Res. 14 2004 1085 1094
    • (2004) Genome Res. , vol.14 , pp. 1085-1094
    • Lee, H.K.1    Hsu, A.K.2    Sajdak, J.3    Qin, J.4    Pavlidis, P.5
  • 18
    • 25444476441 scopus 로고    scopus 로고
    • Systematic survey reveals general applicability of "guilt-by- association" within gene coexpression networks
    • C. Wolfe, I. Kohane, and A. Butte Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks BMC Bioinformatics 6 2005 227
    • (2005) BMC Bioinformatics , vol.6 , pp. 227
    • Wolfe, C.1    Kohane, I.2    Butte, A.3
  • 19
    • 73249114746 scopus 로고    scopus 로고
    • Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression
    • T. Obayashi, and K. Kinoshita Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression DNA Res. 16 2009 249 260
    • (2009) DNA Res. , vol.16 , pp. 249-260
    • Obayashi, T.1    Kinoshita, K.2
  • 20
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes Discovery of meaningful associations in genomic data using partial correlation coefficients Bioinformatics 20 2004 3565 3574
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • De La Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 21
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-A review
    • F. Markowetz, and R. Spang Inferring cellular networks-a review BMC Bioinformatics 8 2007 S5
    • (2007) BMC Bioinformatics , vol.8 , pp. 5
    • Markowetz, F.1    Spang, R.2
  • 23
    • 71749096988 scopus 로고    scopus 로고
    • A conditional independence algorithm for learning undirected graphical models
    • C. Borgelt A conditional independence algorithm for learning undirected graphical models J. Comput. System Sci. 76 2010 21 33
    • (2010) J. Comput. System Sci. , vol.76 , pp. 21-33
    • Borgelt, C.1
  • 25
    • 31144468507 scopus 로고    scopus 로고
    • Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining
    • M. Kaya, and R. Alhajj Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining Appl. Intell. 24 2006 7 152
    • (2006) Appl. Intell. , vol.24 , pp. 7-152
    • Kaya, M.1    Alhajj, R.2
  • 26
    • 29444447081 scopus 로고    scopus 로고
    • An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules
    • B. Alatas, and E. Akin An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules Soft Comput. 10 2006 230 237
    • (2006) Soft Comput. , vol.10 , pp. 230-237
    • Alatas, B.1    Akin, E.2
  • 29
    • 33847628818 scopus 로고    scopus 로고
    • Mining association rules through integration of clustering analysis and ant colony system for health insurance database in Taiwan
    • R.J. Kuo, S.Y. Lin, and C.W. Shih Mining association rules through integration of clustering analysis and ant colony system for health insurance database in Taiwan Expert Syst. Appl. 33 2007 794 808
    • (2007) Expert Syst. Appl. , vol.33 , pp. 794-808
    • Kuo, R.J.1    Lin, S.Y.2    Shih, C.W.3
  • 31
    • 79960106284 scopus 로고    scopus 로고
    • Extracting association rules from HIV infected patients' treatment dataset
    • K. Rameshkumar Extracting association rules from HIV infected patients' treatment dataset Trends in Bioinformatics 4 2011 35 46
    • (2011) Trends in Bioinformatics , vol.4 , pp. 35-46
    • Rameshkumar, K.1
  • 32
    • 71849099104 scopus 로고    scopus 로고
    • Visualizing and fuzzy filtering for discovering temporal trajectories of association rules
    • M. Steinbrecher, and R. Kruse Visualizing and fuzzy filtering for discovering temporal trajectories of association rules J. Comput. System Sci. 76 2010 77 87
    • (2010) J. Comput. System Sci. , vol.76 , pp. 77-87
    • Steinbrecher, M.1    Kruse, R.2
  • 33
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: A survey
    • L. Geng, and H.J. Hamilton Interestingness measures for data mining: a survey ACM Comput. Surv. 38 2006 9
    • (2006) ACM Comput. Surv. , vol.38 , pp. 9
    • Geng, L.1    Hamilton, H.J.2
  • 34
    • 0002877253 scopus 로고
    • Discovery, analysis and presentation of strong rules
    • G. Piatetsky-Shapiro, Discovery, analysis and presentation of strong rules, in: Knowledge Discovery in Databases, 1991, pp. 229-248.
    • (1991) Knowledge Discovery in Databases , pp. 229-248
    • Piatetsky-Shapiro, G.1
  • 36
    • 34548516224 scopus 로고    scopus 로고
    • Meaningful discretization of continuous features for association rules mining by means of a SOM
    • Bruges, Belgium
    • M. Vannucci, V. Colla, Meaningful discretization of continuous features for association rules mining by means of a SOM, in: Proceedings of the European Symposium on Artificial Neural Networks, Bruges, Belgium, 2004, pp. 489-494.
    • (2004) Proceedings of the European Symposium on Artificial Neural Networks , pp. 489-494
    • Vannucci, M.1    Colla, V.2
  • 38
    • 57349125755 scopus 로고    scopus 로고
    • First approach toward on-line evolution of association rules with learning classifier systems
    • A. Orriols-Puig, J. Casillas, E. Bernadó-Mansilla, First approach toward on-line evolution of association rules with learning classifier systems, in: Proceedings of the 2008 GECCO Genetic and Evolutionary Computation Conference, 2008, pp. 2031-2038.
    • (2008) Proceedings of the 2008 GECCO Genetic and Evolutionary Computation Conference , pp. 2031-2038
    • Orriols-Puig, A.1
  • 39
    • 49049095695 scopus 로고    scopus 로고
    • Rough particle swarm optimization and its applications in data mining
    • B. Alatas, and E. Akin Rough particle swarm optimization and its applications in data mining Soft Comput. 12 2008 1205 1218
    • (2008) Soft Comput. , vol.12 , pp. 1205-1218
    • Alatas, B.1    Akin, E.2
  • 40
    • 42549148944 scopus 로고    scopus 로고
    • Mining quantitative association rules by interval clustering
    • Y. Yin, Z. Zhong, and Y. Wang Mining quantitative association rules by interval clustering J. Comput. Inf. Syst. 4 2008 609 616
    • (2008) J. Comput. Inf. Syst. , vol.4 , pp. 609-616
    • Yin, Y.1    Zhong, Z.2    Wang, Y.3
  • 42
    • 81855221745 scopus 로고    scopus 로고
    • An evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretization
    • V. Pachón Álvarez, and J. Mata Vázquez An evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretization Expert Syst. Appl. 39 2012 585 593
    • (2012) Expert Syst. Appl. , vol.39 , pp. 585-593
    • Pachón Álvarez, V.1    Mata Vázquez, J.2
  • 43
    • 56349170668 scopus 로고    scopus 로고
    • Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support
    • X. Yan, C. Zhang, and S. Zhang Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support Expert Syst. Appl. 36 2009 3066 3076
    • (2009) Expert Syst. Appl. , vol.36 , pp. 3066-3076
    • Yan, X.1    Zhang, C.2    Zhang, S.3
  • 44
    • 84862663078 scopus 로고    scopus 로고
    • Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules
    • J.M. Luna, J.R. Romero, and S. Ventura Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules Knowl. Inf. Syst. 32 2012 53 76
    • (2012) Knowl. Inf. Syst. , vol.32 , pp. 53-76
    • Luna, J.M.1    Romero, J.R.2    Ventura, S.3
  • 45
    • 84877607651 scopus 로고    scopus 로고
    • Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data
    • C. Romero, A. Zafra, J.M. Luna, and S. Ventura Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data Expert Syst. 2012
    • (2012) Expert Syst.
    • Romero, C.1    Zafra, A.2    Luna, J.M.3    Ventura, S.4
  • 46
    • 77949615569 scopus 로고    scopus 로고
    • Analysis of the effectiveness of the genetic algorithms based on extraction of association rules
    • J. Alcalá-Fdez, N. Flugy-Pape, A. Bonarini, and F. Herrera Analysis of the effectiveness of the genetic algorithms based on extraction of association rules Fund. Inform. 98 2010 1001 1014
    • (2010) Fund. Inform. , vol.98 , pp. 1001-1014
    • Alcalá-Fdez, J.1    Flugy-Pape, N.2    Bonarini, A.3    Herrera, F.4
  • 49
    • 34548472851 scopus 로고    scopus 로고
    • MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules
    • B. Alatas, E. Akin, and A. Karci MODENAR: multi-objective differential evolution algorithm for mining numeric association rules Appl. Soft Comput. 8 2008 646 656
    • (2008) Appl. Soft Comput. , vol.8 , pp. 646-656
    • Alatas, B.1    Akin, E.2    Karci, A.3
  • 50
    • 77956619716 scopus 로고    scopus 로고
    • Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence
    • H.R. Qodmanan, M. Nasiri, and B. Minaei-Bidgoli Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence Expert Syst. Appl. 38 2011 288 298
    • (2011) Expert Syst. Appl. , vol.38 , pp. 288-298
    • Qodmanan, H.R.1    Nasiri, M.2    Minaei-Bidgoli, B.3
  • 51
    • 80052650662 scopus 로고    scopus 로고
    • An evolutionary algorithm to discover quantitative association rules in multidimensional time series
    • M. Martínez-Ballesteros, F. Martínez-Álvarez, A. Troncoso, and J.C. Riquelme An evolutionary algorithm to discover quantitative association rules in multidimensional time series Soft Comput. 15 2011 2065 2084
    • (2011) Soft Comput. , vol.15 , pp. 2065-2084
    • Martínez-Ballesteros, M.1    Martínez-Álvarez, F.2    Troncoso, A.3    Riquelme, J.C.4
  • 52
    • 78649542882 scopus 로고    scopus 로고
    • Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution
    • M. Martínez-Ballesteros, F. Martínez-Álvarez, A. Troncoso, and J.C. Riquelme Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution Integr. Comput.-Aided Eng. 17 2010 227 242
    • (2010) Integr. Comput.-Aided Eng. , vol.17 , pp. 227-242
    • Martínez-Ballesteros, M.1    Martínez-Álvarez, F.2    Troncoso, A.3    Riquelme, J.C.4
  • 54
    • 0000448376 scopus 로고
    • Genetic algorithms, tournament selection, and the effects of noise
    • B.L. Miller, and D. Goldberg Genetic algorithms, tournament selection, and the effects of noise Complex Systems 9 1995 193 212
    • (1995) Complex Systems , vol.9 , pp. 193-212
    • Miller, B.L.1    Goldberg, D.2
  • 55
    • 84971641220 scopus 로고
    • SIA: A Supervised Inductive Algorithm with genetic search for learning attribute based concepts
    • G. Venturini, SIA: A Supervised Inductive Algorithm with genetic search for learning attribute based concepts, in: Proceedings of the European Conference on Machine Learning, 1993, pp. 280-296.
    • (1993) Proceedings of the European Conference on Machine Learning , pp. 280-296
    • Venturini, G.1
  • 56
    • 41549138299 scopus 로고    scopus 로고
    • An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae
    • I. Lee, Z. Li, and E.M. Marcotte An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae PLoS ONE 2 2007 e988
    • (2007) PLoS ONE , vol.2 , pp. 988
    • Lee, I.1    Li, Z.2    Marcotte, E.M.3
  • 58
    • 0034564415 scopus 로고    scopus 로고
    • Linear modeling of genetic networks from experimental data
    • E. van Someren, L.F. Wessels, M.J. Reinders, Linear modeling of genetic networks from experimental data, in: ISMB'00, 2000, pp. 355-366.
    • (2000) ISMB'00 , pp. 355-366
    • Van Someren, E.1    Wessels, L.F.2    Reinders, M.J.3
  • 60
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • I. Lee, S.V. Date, A.T. Adai, and E.M. Marcotte A probabilistic functional network of yeast genes Science 306 2004 1555 1558
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 63
    • 0028799428 scopus 로고
    • Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae
    • H. Althoefer, A. Schleiffer, K. Wassmann, A. Nordheim, and G. Ammerer Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae Mol. Cell. Biol. 15 1995 5917 5928
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5917-5928
    • Althoefer, H.1    Schleiffer, A.2    Wassmann, K.3    Nordheim, A.4    Ammerer, G.5
  • 64
    • 0342894696 scopus 로고    scopus 로고
    • Ndd1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae
    • C.J. Loy, D. Lydall, and U. Surana Ndd1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae Mol. Cell. Biol. 19 1999 3312 3327
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 3312-3327
    • Loy, C.J.1    Lydall, D.2    Surana, U.3
  • 65
    • 0031015401 scopus 로고    scopus 로고
    • The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase
    • J. Toyn, A. Johnson, J. Donovan, W. Toone, and L. Johnston The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase Genetics 145 1997 85 96
    • (1997) Genetics , vol.145 , pp. 85-96
    • Toyn, J.1    Johnson, A.2    Donovan, J.3    Toone, W.4    Johnston, L.5
  • 66
    • 0026699308 scopus 로고
    • Clb5: A novel B cyclin from budding yeast with a role in S phase
    • C.B. Epstein, and F.R. Cross Clb5: a novel B cyclin from budding yeast with a role in S phase Genes Dev. 6 1992 1695 1706
    • (1992) Genes Dev. , vol.6 , pp. 1695-1706
    • Epstein, C.B.1    Cross, F.R.2
  • 67
    • 0029658719 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities
    • K. Levine, K. Huang, and F.R. Cross Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities Mol. Cell. Biol. 16 1996 6794 6803
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 6794-6803
    • Levine, K.1    Huang, K.2    Cross, F.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.