메뉴 건너뛰기




Volumn 15, Issue 10, 2011, Pages 2065-2084

An evolutionary algorithm to discover quantitative association rules in multidimensional time series

Author keywords

Data mining; Evolutionary algorithms; Quantitative association rules; Time series

Indexed keywords

ATTRIBUTE DISCRETIZATION; DATA SETS; EVOLUTIONARY APPROACH; MULTIDIMENSIONAL TIME; QUANTITATIVE ASSOCIATION RULES; SEVERAL VARIABLES; SYNTHETIC-TIME;

EID: 80052650662     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-011-0705-4     Document Type: Article
Times cited : (40)

References (48)
  • 5
    • 29444447081 scopus 로고    scopus 로고
    • An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules
    • Alatas B, Akin E (2006) An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules. Soft Comput 10(3): 230-237.
    • (2006) Soft Comput , vol.10 , Issue.3 , pp. 230-237
    • Alatas, B.1    Akin, E.2
  • 6
    • 49049095695 scopus 로고    scopus 로고
    • Rough particle swarm optimization and its applications in data mining
    • Alatas B, Akin E (2008) Rough particle swarm optimization and its applications in data mining. Soft Comput 12(12): 1205-1218.
    • (2008) Soft Comput , vol.12 , Issue.12 , pp. 1205-1218
    • Alatas, B.1    Akin, E.2
  • 7
    • 34548472851 scopus 로고    scopus 로고
    • MODENAR: multi-objective differential evolution algorithm for mining numeric association rules
    • Alatas B, Akin E, Karci A (2008) MODENAR: multi-objective differential evolution algorithm for mining numeric association rules. Appl Soft Comput 8(1): 646-656.
    • (2008) Appl Soft Comput , vol.8 , Issue.1 , pp. 646-656
    • Alatas, B.1    Akin, E.2    Karci, A.3
  • 8
    • 59649112625 scopus 로고    scopus 로고
    • Learning the membership function contexts forming fuzzy association rules by using genetic algorithms
    • Alcalá-Fdez J, Alcalá R, Gacto MJ, Herrera F (2009a) Learning the membership function contexts forming fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst 160(7): 905-921.
    • (2009) Fuzzy Sets Syst , vol.160 , Issue.7 , pp. 905-921
    • Alcalá-Fdez, J.1    Alcalá, R.2    Gacto, M.J.3    Herrera, F.4
  • 10
    • 77949615569 scopus 로고    scopus 로고
    • Analysis of the effectiveness of the genetic algorithms based on extraction of association rules
    • Alcalá-Fdez J, Flugy-Pape N, Bonarini A, Herrera F (2010) Analysis of the effectiveness of the genetic algorithms based on extraction of association rules. Fundam Inform 98(1): 1001-1014.
    • (2010) Fundam Inform , vol.98 , Issue.1 , pp. 1001-1014
    • Alcalá-Fdez, J.1    Flugy-Pape, N.2    Bonarini, A.3    Herrera, F.4
  • 11
    • 0038005421 scopus 로고    scopus 로고
    • A statistical theory for quantitative association rules
    • Aumann Y, Lindell Y (2003) A statistical theory for quantitative association rules. J Intell Inf Syst 20(3): 255-283.
    • (2003) J Intell Inf Syst , vol.20 , Issue.3 , pp. 255-283
    • Aumann, Y.1    Lindell, Y.2
  • 12
    • 18844368769 scopus 로고    scopus 로고
    • Temporal data mining for the quality assessment of hemodialysis services
    • Bellazzi R, Larizza C, Magni P, Bellazzi R (2005) Temporal data mining for the quality assessment of hemodialysis services. Artif Intell Med 34: 25-39.
    • (2005) Artif Intell Med , vol.34 , pp. 25-39
    • Bellazzi, R.1    Larizza, C.2    Magni, P.3    Bellazzi, R.4
  • 13
    • 75149139352 scopus 로고    scopus 로고
    • GP-COACH: genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems
    • Berlanga FJ, Rivera AJ, del Jesus MJ, Herrera F (2010) GP-COACH: genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems. Inf Sci 180(8): 1183-1200.
    • (2010) Inf Sci , vol.180 , Issue.8 , pp. 1183-1200
    • Berlanga, F.J.1    Rivera, A.J.2    del Jesus, M.J.3    Herrera, F.4
  • 16
    • 81155155479 scopus 로고    scopus 로고
    • Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering
    • (in press)
    • Chen CH, Hong TP, Tseng V (2010) Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering. Soft Comput (in press).
    • (2010) Soft Comput
    • Chen, C.H.1    Hong, T.P.2    Tseng, V.3
  • 18
    • 0002922219 scopus 로고    scopus 로고
    • Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach
    • Elkamel A, Abdul-Wahab S, Bouhamra W, Alper E (2001) Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Adv Environ Res 5: 47-59.
    • (2001) Adv Environ Res , vol.5 , pp. 47-59
    • Elkamel, A.1    Abdul-Wahab, S.2    Bouhamra, W.3    Alper, E.4
  • 19
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
    • García S, Fernández A, Luengo J, Herrera F (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13(10): 959-977.
    • (2009) Soft Comput , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 20
    • 27544508838 scopus 로고    scopus 로고
    • Analyzing microarray data using quantitative association rules
    • Georgii E, Richter L, Ruckert U, Kramer S (2005) Analyzing microarray data using quantitative association rules. BMC Bioinformatics 21(2): 123-129.
    • (2005) BMC Bioinformatics , vol.21 , Issue.2 , pp. 123-129
    • Georgii, E.1    Richter, L.2    Ruckert, U.3    Kramer, S.4
  • 21
    • 37149046449 scopus 로고    scopus 로고
    • Mining quantitative association rules in protein sequences
    • Gupta N, Mangal N, Tiwari K, Pabitra Mitra (2006) Mining quantitative association rules in protein sequences. Lect Notes Artif Intell 3755: 273-281.
    • (2006) Lect Notes Artif Intell , vol.3755 , pp. 273-281
    • Gupta, N.1    Mangal, N.2    Tiwari, K.3    Pabitra, M.4
  • 23
    • 14844346163 scopus 로고    scopus 로고
    • Hybrid crossover operators for real-coded genetic algorithms: an experimental study
    • Herrera F, Lozano M, Sánchez AM (2004) Hybrid crossover operators for real-coded genetic algorithms: an experimental study. Soft Comput 9(4): 280-298.
    • (2004) Soft Comput , vol.9 , Issue.4 , pp. 280-298
    • Herrera, F.1    Lozano, M.2    Sánchez, A.M.3
  • 24
    • 44949214022 scopus 로고    scopus 로고
    • Efficient mining of salinity and temperature association rules from ARGO data
    • Huang YP, Kao LJ, Sandnes FE (2008) Efficient mining of salinity and temperature association rules from ARGO data. Expert Syst Appl 35: 59-68.
    • (2008) Expert Syst Appl , vol.35 , pp. 59-68
    • Huang, Y.P.1    Kao, L.J.2    Sandnes, F.E.3
  • 25
    • 0036885602 scopus 로고    scopus 로고
    • A computationally efficient evolutionary algorithm for real-parameter optimization
    • Kalyanmoy D, Ashish A, Dhiraj J (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10(4): 371-395.
    • (2002) Evol Comput , vol.10 , Issue.4 , pp. 371-395
    • Kalyanmoy, D.1    Ashish, A.2    Dhiraj, J.3
  • 26
    • 84857363570 scopus 로고    scopus 로고
    • A sliding windows based dual support framework for discovering emerging trends from temporal data
    • Khan MS, Coenen F, Reid D, Patel R, Archer L (2010) A sliding windows based dual support framework for discovering emerging trends from temporal data. Res Dev Intell Syst Part 2: 35-48.
    • (2010) Res Dev Intell Syst Part , vol.2 , pp. 35-48
    • Khan, M.S.1    Coenen, F.2    Reid, D.3    Patel, R.4    Archer, L.5
  • 30
    • 84945244688 scopus 로고    scopus 로고
    • Discovering numeric association rules via evolutionary algorithm
    • Mata J, Álvarez JL, Riquelme JC (2002) Discovering numeric association rules via evolutionary algorithm. Lect Notes Artif Intell 2336: 40-51.
    • (2002) Lect Notes Artif Intell , vol.2336 , pp. 40-51
    • Mata, J.1    Álvarez, J.L.2    Riquelme, J.C.3
  • 31
    • 63149102006 scopus 로고    scopus 로고
    • Identification of temporal association rules from time-series microarray data sets
    • Nam H, Lee K, Lee D (2009) Identification of temporal association rules from time-series microarray data sets. BMC Bioinformatics 10(3): 1-9.
    • (2009) BMC Bioinformatics , vol.10 , Issue.3 , pp. 1-9
    • Nam, H.1    Lee, K.2    Lee, D.3
  • 32
    • 69949146806 scopus 로고    scopus 로고
    • A sequence mining method to predict the bidding strategy of trading agents
    • Nikolaidou V, Mitkas PA (2009) A sequence mining method to predict the bidding strategy of trading agents. Lect Notes Comput Sci 5680: 139-151.
    • (2009) Lect Notes Comput Sci , vol.5680 , pp. 139-151
    • Nikolaidou, V.1    Mitkas, P.A.2
  • 38
  • 39
    • 26944443845 scopus 로고    scopus 로고
    • Mining quantitative association rules on overlapped intervals
    • Tong Q, Yan B, Zhou Y (2005) Mining quantitative association rules on overlapped intervals. Lect Notes Artif Intell 3584: 43-50.
    • (2005) Lect Notes Artif Intell , vol.3584 , pp. 43-50
    • Tong, Q.1    Yan, B.2    Zhou, Y.3
  • 40
    • 0037252216 scopus 로고    scopus 로고
    • Efficient mining of intertransaction association rules
    • Tung AKH, Han J, Lu H, Feng L (2003) Efficient mining of intertransaction association rules. IEEE Trans Knowl Data Eng 15(1): 43-56.
    • (2003) IEEE Trans Knowl Data Eng , vol.15 , Issue.1 , pp. 43-56
    • Tung, A.K.H.1    Han, J.2    Lu, H.3    Feng, L.4
  • 42
    • 84971641220 scopus 로고
    • SIA: a supervised inductive algorithm with genetic search for learning attribute based concepts
    • Venturini G (1993) SIA: a supervised inductive algorithm with genetic search for learning attribute based concepts. In: Proceedings of the European conference on machine learning, pp 280-296.
    • (1993) Proceedings of the European conference on machine learning , pp. 280-296
    • Venturini, G.1
  • 45
    • 79951790326 scopus 로고    scopus 로고
    • Hybrid rule ordering in classification association rule mining
    • Wang YJ, Xin Q, Coenen F (2008) Hybrid rule ordering in classification association rule mining. Trans Mach Learn Data Min 1(1): 17-30.
    • (2008) Trans Mach Learn Data Min , vol.1 , Issue.1 , pp. 17-30
    • Wang, Y.J.1    Xin, Q.2    Coenen, F.3
  • 46
    • 34250202878 scopus 로고    scopus 로고
    • ARMADA-an algorithm for discovering richer relative temporal association rules from interval-based data
    • Winarko E, Roddick JF (2007) ARMADA-an algorithm for discovering richer relative temporal association rules from interval-based data. Data Knowl Eng 63: 76-90.
    • (2007) Data Knowl Eng , vol.63 , pp. 76-90
    • Winarko, E.1    Roddick, J.F.2
  • 47
    • 0027057407 scopus 로고
    • Adjusted p-values for simultaneous inference
    • Wright SP (1992) Adjusted p-values for simultaneous inference. Biometrics 48: 1005-1013.
    • (1992) Biometrics , vol.48 , pp. 1005-1013
    • Wright, S.P.1
  • 48
    • 56349170668 scopus 로고    scopus 로고
    • Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support
    • Yan X, Zhang C, Zhang S (2009) Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Syst Appl Int J 36(2): 3066-3076.
    • (2009) Expert Syst Appl Int J , vol.36 , Issue.2 , pp. 3066-3076
    • Yan, X.1    Zhang, C.2    Zhang, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.