메뉴 건너뛰기




Volumn 98, Issue 1, 2010, Pages 1-14

Analysis of the effectiveness of the genetic algorithms based on extraction of association rules

Author keywords

Association Rules; Data Mining; Evolutionary Algorithms; Genetic Algorithms

Indexed keywords

DECISION MAKERS; QUANTITATIVE ASSOCIATION RULES; QUANTITATIVE DATA; QUANTITATIVE VALUES; REAL-WORLD APPLICATION; REAL-WORLD DATABASE; TRANSACTION DATA;

EID: 77949615569     PISSN: 01692968     EISSN: None     Source Type: Journal    
DOI: 10.3233/FI-2010-213     Document Type: Article
Times cited : (30)

References (42)
  • 3
    • 59649112625 scopus 로고    scopus 로고
    • Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms
    • Alcala-Fdez, J., Alcala, R., Gacto, M. J., Herrera, F.: Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms, Fuzzy Sets and Systems, 160(7), 2009, 905-921.
    • (2009) Fuzzy Sets and Systems , vol.160 , Issue.7 , pp. 905-921
    • Alcala-Fdez, J.1    Alcala, R.2    Gacto, M.J.3    Herrera, F.4
  • 4
    • 35248852487 scopus 로고    scopus 로고
    • Evolving multiple discretizations with adaptive intervals for a pittsburgh rule- based learning classifier system
    • Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (E. Cantu-Paz, J. Foster, Eds.)
    • Bacardit, J., Garrell, J.-M.: Evolving Multiple Discretizations with Adaptive Intervals for a Pittsburgh Rule- Based Learning Classifier System, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (E. Cantu-Paz, J. Foster, Eds.), vol.2724 of Lecture Notes in Computer Science, Springer, Heidelberg, 2003, 1818-1831.
    • (2003) Lecture Notes in Computer Science, Springer, Heidelberg , vol.2724 , pp. 1818-1831
    • Bacardit, J.1    Garrell, J.-M.2
  • 5
    • 38049170776 scopus 로고    scopus 로고
    • Improving the performance of a pittsburgh learning classifier system using a default rule
    • Learning Classifier Systems (T. Kovacs, X. Llor, K. Takadama, P. L. Lanzi, W. Stolzmann, , S. W. Wilson, Eds.)
    • Bacardit, J., Goldberg, D.-E., Butz, M.-V.: Improving the Performance of a Pittsburgh Learning Classifier System Using a Default Rule, in: Learning Classifier Systems (T. Kovacs, X. Llor, K. Takadama, P. L. Lanzi, W. Stolzmann, , S. W. Wilson, Eds.), vol.4399 of Lecture Notes in Computer Science, Springer, Heidelberg, 2007, 291-307.
    • (2007) Lecture Notes in Computer Science, Springer, Heidelberg , vol.4399 , pp. 291-307
    • Bacardit, J.1    Goldberg, D.-E.2    Butz, M.-V.3
  • 7
    • 19544387826 scopus 로고    scopus 로고
    • Efficient implementations of apriori and éclat
    • CEUR Workshop Proc., Florida, USA
    • Borgelt, C.: Efficient Implementations of Apriori and Eclat, in: Workshop on Frequent Itemset Mining Implementations, vol.90, CEUR Workshop Proc., Florida, USA, 2003, 280-296.
    • (2003) Workshop on Frequent Itemset Mining Implementations , vol.90 , pp. 280-296
    • Borgelt, C.1
  • 8
    • 58049202911 scopus 로고    scopus 로고
    • A genetic-fuzzy mining approach for items with multiple minimum supports
    • Chen, C.-H., Hong, T.-P., Tseng, V. S., Lee, Y.-C.: A genetic-fuzzy mining approach for items with multiple minimum supports, Soft Computing, 13(5), 2008, 521-533.
    • (2008) Soft Computing , vol.13 , Issue.5 , pp. 521-533
    • Chen, C.-H.1    Hong, T.-P.2    Tseng, V.S.3    Lee, Y.-C.4
  • 13
    • 0027696043 scopus 로고
    • Competition-based induction of decision models from examples
    • Greene, D., Smith, S.: Competition-based induction of decision models from examples, Machine Learning, 13(2-3), 1993, 229-257.
    • (1993) Machine Learning , vol.13 , Issue.2-3 , pp. 229-257
    • Greene, D.1    Smith, S.2
  • 16
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent- pattern tree approach
    • Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate Generation: A Frequent- Pattern Tree Approach, Data Mining and Knowledge Discovery, 8(1), 2004, 53-87.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 17
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Taxonomy, current research trends and prospects
    • Herrera, F.: Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects, Evolutionary Intelligence, 1(1), 2008, 27-46.
    • (2008) Evolutionary Intelligence , vol.1 , Issue.1 , pp. 27-46
    • Herrera, F.1
  • 18
    • 0001666176 scopus 로고
    • Cognitive systems based on adaptive algorithms
    • (D. Waterman, F. Hayes-Roth, Eds.) Academic Press, London
    • Holland, J., Reitman, J.: Cognitive systems based on adaptive algorithms, in: Patter-directed inference systems (D. Waterman, F. Hayes-Roth, Eds.), Academic Press, London, 1978, 1148-1158.
    • (1978) Patter-directed Inference Systems , pp. 1148-1158
    • Holland, J.1    Reitman, J.2
  • 22
    • 33644667964 scopus 로고    scopus 로고
    • Evaluating the performance of cost-based discretization versus entropy- and error-based discretization
    • Janssens, D., Brijs, T., Vanhoof, K.,Wets, G.: Evaluating the performance of cost-based discretization versus entropy- and error-based discretization, Computers and Operations Research, 33(11), 2006, 3107-3123.
    • (2006) Computers and Operations Research , vol.33 , Issue.11 , pp. 3107-3123
    • Janssens, D.1    Brijs, T.2    Vanhoof, K.3    Wets, G.4
  • 23
    • 0027696338 scopus 로고
    • Using genetic algorithms for concept learning
    • Jong, K. D., Spears, W., Gordon, D.: Using genetic algorithms for concept learning, Machine Learning, 13(2-3), 1993, 161-188.
    • (1993) Machine Learning , vol.13 , Issue.2-3 , pp. 161-188
    • Jong, K.D.1    Spears, W.2    Gordon, D.3
  • 24
    • 31144468507 scopus 로고    scopus 로고
    • Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining
    • Kaya, M., Alhajj, R.: Utilizing Genetic Algorithms to Optimize Membership Functions for Fuzzy Weighted Association Rules Mining, Applied Intelligence, 24(1), 2006, 7-15.
    • (2006) Applied Intelligence , vol.24 , Issue.1 , pp. 7-15
    • Kaya, M.1    Alhajj, R.2
  • 25
    • 34047243825 scopus 로고    scopus 로고
    • A Hellinger-based discretization method for numerica attributes in classification learning
    • Lee, C.-H.: A Hellinger-based discretization method for numerica attributes in classification learning, Knowledge-Based Systems, 20(4), 2007, 419-425.
    • (2007) Knowledge-Based Systems , vol.20 , Issue.4 , pp. 419-425
    • Lee, C.-H.1
  • 27
    • 84945244688 scopus 로고
    • Discovering numeric association rules via evolu-tionary algorithm
    • Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (G. Rawlin, Ed.) Springer, Heidelberg
    • Mata, J., Alvarez, J., Riquelme, J.: Discovering Numeric Association Rules via Evolu-tionary Algorithm, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (G. Rawlin, Ed.), vol.2336 of Lecture Notes in Computer Science, Springer, Heidelberg, 1991, 40-51.
    • (1991) Lecture Notes in Computer Science , vol.2336 , pp. 40-51
    • Mata, J.1    Alvarez, J.2    Riquelme, J.3
  • 29
    • 0036038544 scopus 로고    scopus 로고
    • An evolutionary algorithm to discover numeric association rules
    • Madrid, Spain, March
    • Mata, J., Alvarez, J., Riquelme, J.: An Evolutionary Algorithm to Discover Numeric Association Rules, ACM Symposium on Applied Computing,Madrid, Spain, March 2002.
    • (2002) ACM Symposium on Applied Computing
    • Mata, J.1    Alvarez, J.2    Riquelme, J.3
  • 30
    • 2142654791 scopus 로고    scopus 로고
    • Mladenic, D., Lavrac, N., Bohanec, M., Moyle, S., Eds. Kluwer Academic Publishers, Norwell, MA, USA
    • Mladenic, D., Lavrac, N., Bohanec, M., Moyle, S., Eds.: Data Mining and Decision Support: Integration and Collaboration, Kluwer Academic Publishers, Norwell, MA, USA, 2002.
    • (2002) Data Mining and Decision Support: Integration and Collaboration
  • 31
    • 85052439689 scopus 로고    scopus 로고
    • Pal, S. K., Wang, P. P., Eds. CRC Press, Inc., Boca Raton, FL, USA
    • Pal, S. K., Wang, P. P., Eds.: Genetic Algorithms for Pattern Recognition, CRC Press, Inc., Boca Raton, FL, USA, 1996.
    • (1996) Genetic Algorithms for Pattern Recognition
  • 35
    • 35748943218 scopus 로고    scopus 로고
    • A discretization algorithm based on Class-Attribute Contingency Coefficient
    • Tsai, C.-J., Lee, C.-I., Yang,W.-P.: A discretization algorithm based on Class-Attribute Contingency Coefficient, Information Science, 178(3), 2008, 714-731.
    • (2008) Information Science , vol.178 , Issue.3 , pp. 714-731
    • Tsai, C.-J.1    Lee, C.-I.2    Yang, W.-P.3
  • 36
    • 51349137112 scopus 로고    scopus 로고
    • Risk mining for infection control
    • Communications and Discoveries from Multidisciplinary Data (S. Iwata, Y. Ohsawa, S. Tsumoto, N. Zhong, Y. Shi, L. Magnani, Eds.) Springer, Heidelberg
    • Tsumoto, S., Matsuoka, K., Yokoyama, S.: Risk Mining for Infection Control, in: Communications and Discoveries from Multidisciplinary Data (S. Iwata, Y. Ohsawa, S. Tsumoto, N. Zhong, Y. Shi, L. Magnani, Eds.), vol.123 of Studies in Computational Intelligence, Springer, Heidelberg, 2008, 283-297
    • (2008) Studies in Computational Intelligence , vol.123 , pp. 283-297
    • Tsumoto, S.1    Matsuoka, K.2    Yokoyama, S.3
  • 37
    • 84971641220 scopus 로고
    • SIA: A supervised inductive algorithm with genetic search for learning attrib-ute based concepts
    • Proceedings of the European Conference on Machine Learning Viena, Austria, April
    • Venturini, G.: SIA: a supervised inductive algorithm with genetic search for learning attrib-ute based concepts, in: Proceedings of the European Conference on Machine Learning, vol.667 of Lecture Notes in Computer Science, Viena, Austria, April 1993, 280-296.
    • (1993) Lecture Notes in Computer Science , vol.667 , pp. 280-296
    • Venturini, G.1
  • 39
    • 23744471269 scopus 로고    scopus 로고
    • ARMGA: Identifying interesting association rules with genetic algorithms
    • Yan, X., Zhang, C., Zhang, S.: ARMGA: Identifying Interesting Association Rules with Genetic Algorithms, Applied Artificial Intelligence, 19(7), 2005, 677-689.
    • (2005) Applied Artificial Intelligence , vol.19 , Issue.7 , pp. 677-689
    • Yan, X.1    Zhang, C.2    Zhang, S.3
  • 40
    • 56349170668 scopus 로고    scopus 로고
    • Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support
    • Yan, X., Zhang, C., Zhang, S.: Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support, Expert Systems with Applications, 36(2), 2009, 3066-3076.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3066-3076
    • Yan, X.1    Zhang, C.2    Zhang, S.3
  • 42
    • 0042823817 scopus 로고    scopus 로고
    • Association rule mining: Models and algorithms series
    • Springer-Verlag, Berlin
    • Zhang, C., Zhang, S.: Association Rule Mining: Models and Algorithms Series, Lecture Notes in Computer Science, LNAI 2307, Springer-Verlag, Berlin, 2002.
    • (2002) Lecture Notes in Computer Science, LNAI , vol.2307
    • Zhang, C.1    Zhang, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.