-
1
-
-
34547444077
-
-
Intel Corporation, Santa Clara, CA, USA
-
Agosta J.M. Intel Technol. J. 8 4 (2004) 361-372 Intel Corporation, Santa Clara, CA, USA
-
(2004)
Intel Technol. J.
, vol.8
, Issue.4
, pp. 361-372
-
-
Agosta, J.M.1
-
2
-
-
0030692410
-
Evaluation measures for learning probabilistic and possibilistic networks
-
FUZZ-IEEE'97, Barcelona, Spain, IEEE Press, Piscataway, NJ, USA
-
Borgelt C., and Kruse R. Evaluation measures for learning probabilistic and possibilistic networks. Proc. 6th IEEE Int. Conf. on Fuzzy Systems, vol. 2. FUZZ-IEEE'97, Barcelona, Spain (1997), IEEE Press, Piscataway, NJ, USA 1034-1038
-
(1997)
Proc. 6th IEEE Int. Conf. on Fuzzy Systems, vol. 2
, pp. 1034-1038
-
-
Borgelt, C.1
Kruse, R.2
-
3
-
-
0031644869
-
Efficient maximum projection of database-induced multivariate possibility distributions
-
FUZZ-IEEE'98, Anchorage, Alaska, USA, IEEE Press, Piscataway, NJ, USA (CD-ROM)
-
Borgelt C., and Kruse R. Efficient maximum projection of database-induced multivariate possibility distributions. Proc. 7th IEEE Int. Conf. on Fuzzy Systems. FUZZ-IEEE'98, Anchorage, Alaska, USA (1998), IEEE Press, Piscataway, NJ, USA (CD-ROM)
-
(1998)
Proc. 7th IEEE Int. Conf. on Fuzzy Systems
-
-
Borgelt, C.1
Kruse, R.2
-
5
-
-
40549122688
-
Adaptive learning algorithms for Bayesian network classifiers
-
IOS Press, Amsterdam, Netherlands
-
Castillo G. Adaptive learning algorithms for Bayesian network classifiers. AI Commun. 21 1 (2008) 87-88 IOS Press, Amsterdam, Netherlands
-
(2008)
AI Commun.
, vol.21
, Issue.1
, pp. 87-88
-
-
Castillo, G.1
-
6
-
-
56349168101
-
A dynamic Bayesian network for diagnosing ventilator-associated pneumonia in ICU patients
-
Elsevier, Amsterdam, Netherlands
-
Charitos T., van der Gaag L.C., Visscher S., Schurink K.A.M., and Lucas P.J.F. A dynamic Bayesian network for diagnosing ventilator-associated pneumonia in ICU patients. Expert Systems Appl. 36 2.1 (2007) 1249-1258 Elsevier, Amsterdam, Netherlands
-
(2007)
Expert Systems Appl.
, vol.36
, Issue.2 1
, pp. 1249-1258
-
-
Charitos, T.1
van der Gaag, L.C.2
Visscher, S.3
Schurink, K.A.M.4
Lucas, P.J.F.5
-
7
-
-
0042967741
-
Optimal structure identification with Greedy search
-
MIT Press, Cambridge, MA, USA
-
Chickering D.M. Optimal structure identification with Greedy search. J. Mach. Learn. Res. 3 (2002) 507-554 MIT Press, Cambridge, MA, USA
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
8
-
-
0242624706
-
Bayesian network modeling of strokes and their relationship for on-line handwriting recognition
-
Elsevier Science, Amsterdam, Netherlands
-
Cho S.-J., and Kim J.H. Bayesian network modeling of strokes and their relationship for on-line handwriting recognition. Pattern Recogn. 37 2 (2003) 253-264 Elsevier Science, Amsterdam, Netherlands
-
(2003)
Pattern Recogn.
, vol.37
, Issue.2
, pp. 253-264
-
-
Cho, S.-J.1
Kim, J.H.2
-
9
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Kluwer, Dordrecht, Netherlands
-
Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9 (1992) 309-347 Kluwer, Dordrecht, Netherlands
-
(1992)
Mach. Learn.
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
10
-
-
0031345619
-
Learning belief networks from data: An information theory based approach
-
CIKM'97, Las Vegas, NV, ACM Press, New York, NY, USA
-
Cheng J., Bell D.A., and Liu W. Learning belief networks from data: An information theory based approach. Proc. 6th ACM Int. Conf. Information Theory and Knowledge Management. CIKM'97, Las Vegas, NV (1997), ACM Press, New York, NY, USA 325-331
-
(1997)
Proc. 6th ACM Int. Conf. Information Theory and Knowledge Management
, pp. 325-331
-
-
Cheng, J.1
Bell, D.A.2
Liu, W.3
-
11
-
-
0036567524
-
Learning Bayesian networks from data: An information theory based approach
-
Elsevier, Amsterdam, Netherlands
-
Cheng J., Greiner R., Kelly J., Bell D.A., and Liu W. Learning Bayesian networks from data: An information theory based approach. Artificial Intelligence 137 1-2 (2002) 43-90 Elsevier, Amsterdam, Netherlands
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.A.4
Liu, W.5
-
12
-
-
0000735610
-
Operations for learning with graphical models
-
Morgan Kaufman, San Mateo, CA, USA
-
Buntine W. Operations for learning with graphical models. J. Artificial Intelligence Res. 2 (1994) 159-225 Morgan Kaufman, San Mateo, CA, USA
-
(1994)
J. Artificial Intelligence Res.
, vol.2
, pp. 159-225
-
-
Buntine, W.1
-
13
-
-
71749116386
-
Independence in uncertainty theories and its application to learning belief networks
-
Gabbay D., and Kruse R. (Eds), Kluwer, Dordrecht, Netherlands
-
de Campos L.M., Huete J.F., and Moral S. Independence in uncertainty theories and its application to learning belief networks. In: Gabbay D., and Kruse R. (Eds). DRUMS Handbook on Abduction and Learning (2000), Kluwer, Dordrecht, Netherlands 391-434
-
(2000)
DRUMS Handbook on Abduction and Learning
, pp. 391-434
-
-
de Campos, L.M.1
Huete, J.F.2
Moral, S.3
-
14
-
-
0003462302
-
-
Springer, New York, NY, USA
-
Castillo E., Gutierrez J.M., and Hadi A.S. Expert Systems and Probabilistic Network Models (1997), Springer, New York, NY, USA
-
(1997)
Expert Systems and Probabilistic Network Models
-
-
Castillo, E.1
Gutierrez, J.M.2
Hadi, A.S.3
-
15
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
IEEE Press, Piscataway, NJ, USA
-
Chow C.K., and Liu C.N. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory 14 3 (1968) 462-467 IEEE Press, Piscataway, NJ, USA
-
(1968)
IEEE Trans. Inform. Theory
, vol.14
, Issue.3
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
16
-
-
34249932867
-
Articulatory feature recognition using dynamic Bayesian networks
-
Elsevier Science, Amsterdam, Netherlands
-
Frankel J., Webster M., and King S. Articulatory feature recognition using dynamic Bayesian networks. Comput. Speech and Lang. 21 4 (2007) 620-640 Elsevier Science, Amsterdam, Netherlands
-
(2007)
Comput. Speech and Lang.
, vol.21
, Issue.4
, pp. 620-640
-
-
Frankel, J.1
Webster, M.2
King, S.3
-
17
-
-
21844435316
-
-
Springer, Berlin, Germany
-
Gamez J.A., Moral S., and Salmeron A. Advances in Bayesian Networks (2004), Springer, Berlin, Germany
-
(2004)
Advances in Bayesian Networks
-
-
Gamez, J.A.1
Moral, S.2
Salmeron, A.3
-
19
-
-
31844441688
-
Learning Bayesian network classifiers by maximizing conditional likelihood
-
ICML 2004, Banff, Alberta, Canada, ACM Press, New York, NY, USA
-
Learning Bayesian network classifiers by maximizing conditional likelihood. Proc. 21st Int. Conf. on Machine Learning. ICML 2004, Banff, Alberta, Canada (2004), ACM Press, New York, NY, USA 46
-
(2004)
Proc. 21st Int. Conf. on Machine Learning
, pp. 46
-
-
-
20
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Kluwer, Dordrecht, Netherlands
-
Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20 (1995) 197-243 Kluwer, Dordrecht, Netherlands
-
(1995)
Mach. Learn.
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
22
-
-
0004283231
-
-
Jordan M.I. (Ed), MIT Press, Cambridge, MA, USA
-
In: Jordan M.I. (Ed). Learning in Graphical Models (1998), MIT Press, Cambridge, MA, USA
-
(1998)
Learning in Graphical Models
-
-
-
23
-
-
48749117061
-
Automated diagnosis for UMTS networks using a Bayesian network approach
-
IEEE Press, Piscataway, NJ, USA
-
Khanafar R.M., Solana B., Triola J., Barco R., Moltsen L., Altman Z., and Lazaro P. Automated diagnosis for UMTS networks using a Bayesian network approach. IEEE Trans. Veh. Technol. 57 4 (2008) 2451-2461 IEEE Press, Piscataway, NJ, USA
-
(2008)
IEEE Trans. Veh. Technol.
, vol.57
, Issue.4
, pp. 2451-2461
-
-
Khanafar, R.M.1
Solana, B.2
Triola, J.3
Barco, R.4
Moltsen, L.5
Altman, Z.6
Lazaro, P.7
-
24
-
-
3042738945
-
Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
Elsevier Science, Amsterdam, Netherlands
-
Kim S., Imoto S., and Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75 1-3 (2004) 57-65 Elsevier Science, Amsterdam, Netherlands
-
(2004)
Biosystems
, vol.75
, Issue.1-3
, pp. 57-65
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
25
-
-
0004047518
-
-
Oxford University Press, Oxford, United Kingdom
-
Lauritzen S.L. Graphical Models (1996), Oxford University Press, Oxford, United Kingdom
-
(1996)
Graphical Models
-
-
Lauritzen, S.L.1
-
27
-
-
33745794294
-
Bayesian network learning with parameter constraints
-
Microtome Publishing, Brookline, MA, USA
-
Niculescu R.S., Mitchell T.M., and Rao R.B. Bayesian network learning with parameter constraints. J. Mach. Learn. Res. 7 (2006) 1357-1383 Microtome Publishing, Brookline, MA, USA
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1357-1383
-
-
Niculescu, R.S.1
Mitchell, T.M.2
Rao, R.B.3
-
28
-
-
0003391330
-
-
Morgan Kaufmann, San Mateo, CA, USA (2nd edition, 1992)
-
Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (1988), Morgan Kaufmann, San Mateo, CA, USA (2nd edition, 1992)
-
(1988)
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
-
-
Pearl, J.1
-
29
-
-
12844264847
-
Detection of surface defects on raw steel blocks using Bayesian network classifiers
-
Springer, London, United Kingdom
-
Pernkopf F. Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Anal. Appl. 7 3 (2004) 333-342 Springer, London, United Kingdom
-
(2004)
Pattern Anal. Appl.
, vol.7
, Issue.3
, pp. 333-342
-
-
Pernkopf, F.1
-
30
-
-
0003984312
-
Blood Group Determination of Danish Jersey Cattle in the F-blood Group System
-
Dina Foulum, Tjele, Denmark
-
Rasmussen L.K. Blood Group Determination of Danish Jersey Cattle in the F-blood Group System. Dina Res. Rep. vol. 8 (1992), Dina Foulum, Tjele, Denmark
-
(1992)
Dina Res. Rep.
, vol.8
-
-
Rasmussen, L.K.1
-
31
-
-
3042618109
-
Bayesian network multi-classifiers for protein secondary structure identification
-
Elsevier Science, Amsterdam, Netherlands
-
Robles V., Larrañaga R., Pena J., Menasalvas E., Perez M., Herves V., and Wasilewska A. Bayesian network multi-classifiers for protein secondary structure identification. Artificial Intelligence Med. 31 2 (2004) 117-136 Elsevier Science, Amsterdam, Netherlands
-
(2004)
Artificial Intelligence Med.
, vol.31
, Issue.2
, pp. 117-136
-
-
Robles, V.1
Larrañaga, R.2
Pena, J.3
Menasalvas, E.4
Perez, M.5
Herves, V.6
Wasilewska, A.7
-
32
-
-
71749118712
-
On discriminative Bayesian network classifiers and logistic regression
-
Springer, Amsterdam, Netherlands
-
Roos T., Wettig H., Grünwald P., Myllymäki P., and Tirri H. On discriminative Bayesian network classifiers and logistic regression. Mach. Learn. 65 1 (2005) 31-78 Springer, Amsterdam, Netherlands
-
(2005)
Mach. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Roos, T.1
Wettig, H.2
Grünwald, P.3
Myllymäki, P.4
Tirri, H.5
-
33
-
-
5044231638
-
Learning a restricted Bayesian network for object recognition
-
CVPR'04, Washington, DC, IEEE Press, Piscataway, NJ, USA
-
Schneiderman H. Learning a restricted Bayesian network for object recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition. CVPR'04, Washington, DC (2004), IEEE Press, Piscataway, NJ, USA 639-646
-
(2004)
Proc. IEEE Conf. on Computer Vision and Pattern Recognition
, pp. 639-646
-
-
Schneiderman, H.1
-
34
-
-
0042456371
-
An algorithm for the construction of Bayesian network structures from data
-
UAI'93, Washington, DC, USA, Morgan Kaufmann, San Mateo, CA, USA
-
Singh M., and Valtorta M. An algorithm for the construction of Bayesian network structures from data. Proc. 9th Conf. on Uncertainty in Artificial Intelligence. UAI'93, Washington, DC, USA (1993), Morgan Kaufmann, San Mateo, CA, USA 259-265
-
(1993)
Proc. 9th Conf. on Uncertainty in Artificial Intelligence
, pp. 259-265
-
-
Singh, M.1
Valtorta, M.2
-
35
-
-
0003338515
-
Causation, Prediction, and Search
-
Springer, New York, NY, USA
-
Spirtes P., Glymour C., and Scheines R. Causation, Prediction, and Search. Lecture Notes in Statist. vol. 81 (1993), Springer, New York, NY, USA
-
(1993)
Lecture Notes in Statist.
, vol.81
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
37
-
-
33746035971
-
The max-min Hill-Climbing Bayesian network structure learning algorithm
-
Springer, Amsterdam, Netherlands
-
Tsamardinos I., Brown L.E., and Aliferis C.F. The max-min Hill-Climbing Bayesian network structure learning algorithm. Mach. Learn. 65 1 (2006) 31-78 Springer, Amsterdam, Netherlands
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|