메뉴 건너뛰기




Volumn 76, Issue 1, 2010, Pages 21-33

A conditional independence algorithm for learning undirected graphical models

Author keywords

Conditional independence test; Graphical models; Learning from data; Possibilistic network

Indexed keywords

BAYESIAN NETWORKS; DIRECTED GRAPHS; GRAPH ALGORITHMS; GRAPHIC METHODS; LEARNING SYSTEMS;

EID: 71749096988     PISSN: 00220000     EISSN: 10902724     Source Type: Journal    
DOI: 10.1016/j.jcss.2009.05.003     Document Type: Article
Times cited : (16)

References (38)
  • 1
    • 34547444077 scopus 로고    scopus 로고
    • Intel Corporation, Santa Clara, CA, USA
    • Agosta J.M. Intel Technol. J. 8 4 (2004) 361-372 Intel Corporation, Santa Clara, CA, USA
    • (2004) Intel Technol. J. , vol.8 , Issue.4 , pp. 361-372
    • Agosta, J.M.1
  • 2
    • 0030692410 scopus 로고    scopus 로고
    • Evaluation measures for learning probabilistic and possibilistic networks
    • FUZZ-IEEE'97, Barcelona, Spain, IEEE Press, Piscataway, NJ, USA
    • Borgelt C., and Kruse R. Evaluation measures for learning probabilistic and possibilistic networks. Proc. 6th IEEE Int. Conf. on Fuzzy Systems, vol. 2. FUZZ-IEEE'97, Barcelona, Spain (1997), IEEE Press, Piscataway, NJ, USA 1034-1038
    • (1997) Proc. 6th IEEE Int. Conf. on Fuzzy Systems, vol. 2 , pp. 1034-1038
    • Borgelt, C.1    Kruse, R.2
  • 3
    • 0031644869 scopus 로고    scopus 로고
    • Efficient maximum projection of database-induced multivariate possibility distributions
    • FUZZ-IEEE'98, Anchorage, Alaska, USA, IEEE Press, Piscataway, NJ, USA (CD-ROM)
    • Borgelt C., and Kruse R. Efficient maximum projection of database-induced multivariate possibility distributions. Proc. 7th IEEE Int. Conf. on Fuzzy Systems. FUZZ-IEEE'98, Anchorage, Alaska, USA (1998), IEEE Press, Piscataway, NJ, USA (CD-ROM)
    • (1998) Proc. 7th IEEE Int. Conf. on Fuzzy Systems
    • Borgelt, C.1    Kruse, R.2
  • 5
    • 40549122688 scopus 로고    scopus 로고
    • Adaptive learning algorithms for Bayesian network classifiers
    • IOS Press, Amsterdam, Netherlands
    • Castillo G. Adaptive learning algorithms for Bayesian network classifiers. AI Commun. 21 1 (2008) 87-88 IOS Press, Amsterdam, Netherlands
    • (2008) AI Commun. , vol.21 , Issue.1 , pp. 87-88
    • Castillo, G.1
  • 6
    • 56349168101 scopus 로고    scopus 로고
    • A dynamic Bayesian network for diagnosing ventilator-associated pneumonia in ICU patients
    • Elsevier, Amsterdam, Netherlands
    • Charitos T., van der Gaag L.C., Visscher S., Schurink K.A.M., and Lucas P.J.F. A dynamic Bayesian network for diagnosing ventilator-associated pneumonia in ICU patients. Expert Systems Appl. 36 2.1 (2007) 1249-1258 Elsevier, Amsterdam, Netherlands
    • (2007) Expert Systems Appl. , vol.36 , Issue.2 1 , pp. 1249-1258
    • Charitos, T.1    van der Gaag, L.C.2    Visscher, S.3    Schurink, K.A.M.4    Lucas, P.J.F.5
  • 7
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with Greedy search
    • MIT Press, Cambridge, MA, USA
    • Chickering D.M. Optimal structure identification with Greedy search. J. Mach. Learn. Res. 3 (2002) 507-554 MIT Press, Cambridge, MA, USA
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 8
    • 0242624706 scopus 로고    scopus 로고
    • Bayesian network modeling of strokes and their relationship for on-line handwriting recognition
    • Elsevier Science, Amsterdam, Netherlands
    • Cho S.-J., and Kim J.H. Bayesian network modeling of strokes and their relationship for on-line handwriting recognition. Pattern Recogn. 37 2 (2003) 253-264 Elsevier Science, Amsterdam, Netherlands
    • (2003) Pattern Recogn. , vol.37 , Issue.2 , pp. 253-264
    • Cho, S.-J.1    Kim, J.H.2
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Kluwer, Dordrecht, Netherlands
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9 (1992) 309-347 Kluwer, Dordrecht, Netherlands
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 10
    • 0031345619 scopus 로고    scopus 로고
    • Learning belief networks from data: An information theory based approach
    • CIKM'97, Las Vegas, NV, ACM Press, New York, NY, USA
    • Cheng J., Bell D.A., and Liu W. Learning belief networks from data: An information theory based approach. Proc. 6th ACM Int. Conf. Information Theory and Knowledge Management. CIKM'97, Las Vegas, NV (1997), ACM Press, New York, NY, USA 325-331
    • (1997) Proc. 6th ACM Int. Conf. Information Theory and Knowledge Management , pp. 325-331
    • Cheng, J.1    Bell, D.A.2    Liu, W.3
  • 11
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information theory based approach
    • Elsevier, Amsterdam, Netherlands
    • Cheng J., Greiner R., Kelly J., Bell D.A., and Liu W. Learning Bayesian networks from data: An information theory based approach. Artificial Intelligence 137 1-2 (2002) 43-90 Elsevier, Amsterdam, Netherlands
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.A.4    Liu, W.5
  • 12
    • 0000735610 scopus 로고
    • Operations for learning with graphical models
    • Morgan Kaufman, San Mateo, CA, USA
    • Buntine W. Operations for learning with graphical models. J. Artificial Intelligence Res. 2 (1994) 159-225 Morgan Kaufman, San Mateo, CA, USA
    • (1994) J. Artificial Intelligence Res. , vol.2 , pp. 159-225
    • Buntine, W.1
  • 13
    • 71749116386 scopus 로고    scopus 로고
    • Independence in uncertainty theories and its application to learning belief networks
    • Gabbay D., and Kruse R. (Eds), Kluwer, Dordrecht, Netherlands
    • de Campos L.M., Huete J.F., and Moral S. Independence in uncertainty theories and its application to learning belief networks. In: Gabbay D., and Kruse R. (Eds). DRUMS Handbook on Abduction and Learning (2000), Kluwer, Dordrecht, Netherlands 391-434
    • (2000) DRUMS Handbook on Abduction and Learning , pp. 391-434
    • de Campos, L.M.1    Huete, J.F.2    Moral, S.3
  • 15
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • IEEE Press, Piscataway, NJ, USA
    • Chow C.K., and Liu C.N. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory 14 3 (1968) 462-467 IEEE Press, Piscataway, NJ, USA
    • (1968) IEEE Trans. Inform. Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 16
    • 34249932867 scopus 로고    scopus 로고
    • Articulatory feature recognition using dynamic Bayesian networks
    • Elsevier Science, Amsterdam, Netherlands
    • Frankel J., Webster M., and King S. Articulatory feature recognition using dynamic Bayesian networks. Comput. Speech and Lang. 21 4 (2007) 620-640 Elsevier Science, Amsterdam, Netherlands
    • (2007) Comput. Speech and Lang. , vol.21 , Issue.4 , pp. 620-640
    • Frankel, J.1    Webster, M.2    King, S.3
  • 19
    • 31844441688 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers by maximizing conditional likelihood
    • ICML 2004, Banff, Alberta, Canada, ACM Press, New York, NY, USA
    • Learning Bayesian network classifiers by maximizing conditional likelihood. Proc. 21st Int. Conf. on Machine Learning. ICML 2004, Banff, Alberta, Canada (2004), ACM Press, New York, NY, USA 46
    • (2004) Proc. 21st Int. Conf. on Machine Learning , pp. 46
  • 20
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Kluwer, Dordrecht, Netherlands
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20 (1995) 197-243 Kluwer, Dordrecht, Netherlands
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 22
    • 0004283231 scopus 로고    scopus 로고
    • Jordan M.I. (Ed), MIT Press, Cambridge, MA, USA
    • In: Jordan M.I. (Ed). Learning in Graphical Models (1998), MIT Press, Cambridge, MA, USA
    • (1998) Learning in Graphical Models
  • 23
    • 48749117061 scopus 로고    scopus 로고
    • Automated diagnosis for UMTS networks using a Bayesian network approach
    • IEEE Press, Piscataway, NJ, USA
    • Khanafar R.M., Solana B., Triola J., Barco R., Moltsen L., Altman Z., and Lazaro P. Automated diagnosis for UMTS networks using a Bayesian network approach. IEEE Trans. Veh. Technol. 57 4 (2008) 2451-2461 IEEE Press, Piscataway, NJ, USA
    • (2008) IEEE Trans. Veh. Technol. , vol.57 , Issue.4 , pp. 2451-2461
    • Khanafar, R.M.1    Solana, B.2    Triola, J.3    Barco, R.4    Moltsen, L.5    Altman, Z.6    Lazaro, P.7
  • 24
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Elsevier Science, Amsterdam, Netherlands
    • Kim S., Imoto S., and Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75 1-3 (2004) 57-65 Elsevier Science, Amsterdam, Netherlands
    • (2004) Biosystems , vol.75 , Issue.1-3 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 25
    • 0004047518 scopus 로고    scopus 로고
    • Oxford University Press, Oxford, United Kingdom
    • Lauritzen S.L. Graphical Models (1996), Oxford University Press, Oxford, United Kingdom
    • (1996) Graphical Models
    • Lauritzen, S.L.1
  • 27
    • 33745794294 scopus 로고    scopus 로고
    • Bayesian network learning with parameter constraints
    • Microtome Publishing, Brookline, MA, USA
    • Niculescu R.S., Mitchell T.M., and Rao R.B. Bayesian network learning with parameter constraints. J. Mach. Learn. Res. 7 (2006) 1357-1383 Microtome Publishing, Brookline, MA, USA
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1357-1383
    • Niculescu, R.S.1    Mitchell, T.M.2    Rao, R.B.3
  • 29
    • 12844264847 scopus 로고    scopus 로고
    • Detection of surface defects on raw steel blocks using Bayesian network classifiers
    • Springer, London, United Kingdom
    • Pernkopf F. Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Anal. Appl. 7 3 (2004) 333-342 Springer, London, United Kingdom
    • (2004) Pattern Anal. Appl. , vol.7 , Issue.3 , pp. 333-342
    • Pernkopf, F.1
  • 30
    • 0003984312 scopus 로고
    • Blood Group Determination of Danish Jersey Cattle in the F-blood Group System
    • Dina Foulum, Tjele, Denmark
    • Rasmussen L.K. Blood Group Determination of Danish Jersey Cattle in the F-blood Group System. Dina Res. Rep. vol. 8 (1992), Dina Foulum, Tjele, Denmark
    • (1992) Dina Res. Rep. , vol.8
    • Rasmussen, L.K.1
  • 31
    • 3042618109 scopus 로고    scopus 로고
    • Bayesian network multi-classifiers for protein secondary structure identification
    • Elsevier Science, Amsterdam, Netherlands
    • Robles V., Larrañaga R., Pena J., Menasalvas E., Perez M., Herves V., and Wasilewska A. Bayesian network multi-classifiers for protein secondary structure identification. Artificial Intelligence Med. 31 2 (2004) 117-136 Elsevier Science, Amsterdam, Netherlands
    • (2004) Artificial Intelligence Med. , vol.31 , Issue.2 , pp. 117-136
    • Robles, V.1    Larrañaga, R.2    Pena, J.3    Menasalvas, E.4    Perez, M.5    Herves, V.6    Wasilewska, A.7
  • 32
    • 71749118712 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • Springer, Amsterdam, Netherlands
    • Roos T., Wettig H., Grünwald P., Myllymäki P., and Tirri H. On discriminative Bayesian network classifiers and logistic regression. Mach. Learn. 65 1 (2005) 31-78 Springer, Amsterdam, Netherlands
    • (2005) Mach. Learn. , vol.65 , Issue.1 , pp. 31-78
    • Roos, T.1    Wettig, H.2    Grünwald, P.3    Myllymäki, P.4    Tirri, H.5
  • 33
    • 5044231638 scopus 로고    scopus 로고
    • Learning a restricted Bayesian network for object recognition
    • CVPR'04, Washington, DC, IEEE Press, Piscataway, NJ, USA
    • Schneiderman H. Learning a restricted Bayesian network for object recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition. CVPR'04, Washington, DC (2004), IEEE Press, Piscataway, NJ, USA 639-646
    • (2004) Proc. IEEE Conf. on Computer Vision and Pattern Recognition , pp. 639-646
    • Schneiderman, H.1
  • 34
    • 0042456371 scopus 로고
    • An algorithm for the construction of Bayesian network structures from data
    • UAI'93, Washington, DC, USA, Morgan Kaufmann, San Mateo, CA, USA
    • Singh M., and Valtorta M. An algorithm for the construction of Bayesian network structures from data. Proc. 9th Conf. on Uncertainty in Artificial Intelligence. UAI'93, Washington, DC, USA (1993), Morgan Kaufmann, San Mateo, CA, USA 259-265
    • (1993) Proc. 9th Conf. on Uncertainty in Artificial Intelligence , pp. 259-265
    • Singh, M.1    Valtorta, M.2
  • 37
    • 33746035971 scopus 로고    scopus 로고
    • The max-min Hill-Climbing Bayesian network structure learning algorithm
    • Springer, Amsterdam, Netherlands
    • Tsamardinos I., Brown L.E., and Aliferis C.F. The max-min Hill-Climbing Bayesian network structure learning algorithm. Mach. Learn. 65 1 (2006) 31-78 Springer, Amsterdam, Netherlands
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.