메뉴 건너뛰기




Volumn 4 AUG, Issue , 2013, Pages

Permeability of the peroxisomal membrane: Lessons from the glyoxylate cycle

Author keywords

Glyoxylate; Glyoxylate cycle; Membrane permeability; Metabolite transfer; Metabolon; Peroxisomes; Photorespiration; Pore forming protein

Indexed keywords

CARRIER PROTEIN; GLYOXYLIC ACID;

EID: 84884570145     PISSN: None     EISSN: 1664042X     Source Type: Journal    
DOI: 10.3389/fphys.2013.00204     Document Type: Review
Times cited : (37)

References (94)
  • 1
    • 79960206056 scopus 로고    scopus 로고
    • Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in Arabidopsis seedlings
    • doi: 10.1042/BJ20101764
    • Allen, E., Moing, A., Wattis, J. A., Larson, T., Maucourt, M., Graham, I. A., et al. (2011). Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in Arabidopsis seedlings. Biochem. J. 437, 505-513. doi: 10.1042/BJ20101764
    • (2011) Biochem. J. , vol.437 , pp. 505-513
    • Allen, E.1    Moing, A.2    Wattis, J.A.3    Larson, T.4    Maucourt, M.5    Graham, I.A.6
  • 2
    • 33845294782 scopus 로고    scopus 로고
    • Peroxisomal membrane permeability and solute transfer
    • doi: 10.1016/j.bbamcr.2006.08.044
    • Antonenkov, V. D., and Hiltunen, J. K. (2006). Peroxisomal membrane permeability and solute transfer. Biochim. Biophys. Acta 1763, 1697-1706. doi: 10.1016/j.bbamcr.2006.08.044
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 1697-1706
    • Antonenkov, V.D.1    Hiltunen, J.K.2
  • 3
    • 84864065911 scopus 로고    scopus 로고
    • Transfer of metabolites across the peroxisomal membrane
    • doi: 10.1016/j.bbadis.2011.12.011
    • Antonenkov, V. D., and Hiltunen, J. K. (2012). Transfer of metabolites across the peroxisomal membrane. Biochim. Biophys. Acta 1822, 1374-1386. doi: 10.1016/j.bbadis.2011.12.011
    • (2012) Biochim. Biophys. Acta , vol.1822 , pp. 1374-1386
    • Antonenkov, V.D.1    Hiltunen, J.K.2
  • 4
    • 70350336832 scopus 로고    scopus 로고
    • An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates
    • doi: 10.1016/j.biocel.2009.08.014
    • Antonenkov, V. D., Mindthoff, S., Grunau, S., Erdmann, R., and Hiltunen, J. K. (2009). An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates. Int. J. Biochem. Cell Biol. 41, 2546-2554. doi: 10.1016/j.biocel.2009.08.014
    • (2009) Int. J. Biochem. Cell Biol. , vol.41 , pp. 2546-2554
    • Antonenkov, V.D.1    Mindthoff, S.2    Grunau, S.3    Erdmann, R.4    Hiltunen, J.K.5
  • 5
    • 28844503851 scopus 로고    scopus 로고
    • Solute traffic across mammalian peroxisomal membrane-single channel conductance monitoring reveals pore-forming activities in peroxisomes
    • doi: 10.1007/s00018-005-5233-x
    • Antonenkov, V. D., Rokka, A., Sormunen, R. T., Benz, R., and Hiltunen, J. K. (2005). Solute traffic across mammalian peroxisomal membrane-single channel conductance monitoring reveals pore-forming activities in peroxisomes. Cell. Mol. Life Sci. 62, 2886-2895. doi: 10.1007/s00018-005-5233-x
    • (2005) Cell. Mol. Life Sci. , vol.62 , pp. 2886-2895
    • Antonenkov, V.D.1    Rokka, A.2    Sormunen, R.T.3    Benz, R.4    Hiltunen, J.K.5
  • 6
    • 8644248303 scopus 로고    scopus 로고
    • The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles
    • Antonenkov, V. D., Sormunen, R. T., and Hiltunen, J. K. (2004a). The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles. Am. J. Physiol. Cell Physiol. 287, C1623-C1635.
    • (2004) Am. J. Physiol. Cell Physiol. , vol.287
    • Antonenkov, V.D.1    Sormunen, R.T.2    Hiltunen, J.K.3
  • 7
    • 10944248003 scopus 로고    scopus 로고
    • The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro
    • Antonenkov, V. D., Sormunen, R. T., and Hiltunen, J. K. (2004b). The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J. Cell Sci. 117, 5633-5642.
    • (2004) J. Cell Sci. , vol.117 , pp. 5633-5642
    • Antonenkov, V.D.1    Sormunen, R.T.2    Hiltunen, J.K.3
  • 8
    • 34547480948 scopus 로고    scopus 로고
    • The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)-cytosolic aconitase iron-regulatory switch does not operate in plants
    • doi: 10.1042/BJ20061874
    • Arnaud, N., Ravet, K., Borlotti, A., Touraine, B., Boucherez, J., Fizames, C., et al. (2007). The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)-cytosolic aconitase iron-regulatory switch does not operate in plants. Biochem. J. 405, 523-531. doi: 10.1042/BJ20061874
    • (2007) Biochem. J. , vol.405 , pp. 523-531
    • Arnaud, N.1    Ravet, K.2    Borlotti, A.3    Touraine, B.4    Boucherez, J.5    Fizames, C.6
  • 9
    • 0022515187 scopus 로고
    • Organization of citric acid cycle enzymes into a multienzyme cluster
    • doi: 10.1016/0014-5793(86)80621-4
    • Barnes, S. J., and Weitzman, P. D. (1986). Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201, 267-270. doi: 10.1016/0014-5793(86)80621-4
    • (1986) FEBS Lett , vol.201 , pp. 267-270
    • Barnes, S.J.1    Weitzman, P.D.2
  • 10
    • 0029671098 scopus 로고    scopus 로고
    • L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. evidence for involvement in intraperoxisomal NADH reoxidation
    • doi: 10.1074/jbc.271.7.3846
    • Baumgart, E., Fahimi, H. D., Stich, A., and Volkl, A. (1996). L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. evidence for involvement in intraperoxisomal NADH reoxidation. J. Biol. Chem. 271, 3846-3855. doi: 10.1074/jbc.271.7.3846
    • (1996) J. Biol. Chem. , vol.271 , pp. 3846-3855
    • Baumgart, E.1    Fahimi, H.D.2    Stich, A.3    Volkl, A.4
  • 11
    • 0019588210 scopus 로고
    • Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. a study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase
    • doi: 10.1111/j.1432-1033.1981.tb06369.x
    • Beeckmans, S., and Kanarek, L. (1981). Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. a study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase. Eur. J. Biochem. 117, 527-535. doi: 10.1111/j.1432-1033.1981.tb06369.x
    • (1981) Eur. J. Biochem. , vol.117 , pp. 527-535
    • Beeckmans, S.1    Kanarek, L.2
  • 12
    • 0025122041 scopus 로고
    • Transition form of microbodies. overlapping of two sets of marker proteins during the rearrangement of glyoxysomes into leaf peroxisomes
    • doi: 10.1515/bchm3.1990.371.1.85
    • Behrends, W., Birkhan, R., and Kindl, H. (1990). Transition form of microbodies. overlapping of two sets of marker proteins during the rearrangement of glyoxysomes into leaf peroxisomes. Biol. Chem. Hoppe Seyler 371, 85-94. doi: 10.1515/bchm3.1990.371.1.85
    • (1990) Biol. Chem. Hoppe Seyler , vol.371 , pp. 85-94
    • Behrends, W.1    Birkhan, R.2    Kindl, H.3
  • 13
    • 84355162914 scopus 로고    scopus 로고
    • A peroxisomal carrier delivers NAD(+) and contributes to optimal fatty acid degradation during storage oil mobilization
    • doi: 10.1111/j.1365-313X.2011.04775.x
    • Bernhardt, K., Wilkinson, S., Weber, A. P., and Linka, N. (2012). A peroxisomal carrier delivers NAD(+) and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J. 69, 1-13. doi: 10.1111/j.1365-313X.2011.04775.x
    • (2012) Plant J , vol.69 , pp. 1-13
    • Bernhardt, K.1    Wilkinson, S.2    Weber, A.P.3    Linka, N.4
  • 14
    • 0027690080 scopus 로고
    • Effects of light fluence and wavelength on expression of the gene encoding cucumber hydroxypyruvate reductase
    • doi: 10.1104/pp.103.3.933
    • Bertoni, G. P., and Becker, W. M. (1993). Effects of light fluence and wavelength on expression of the gene encoding cucumber hydroxypyruvate reductase. Plant Physiol. 103, 933-941. doi: 10.1104/pp.103.3.933
    • (1993) Plant Physiol , vol.103 , pp. 933-941
    • Bertoni, G.P.1    Becker, W.M.2
  • 15
    • 0345059257 scopus 로고    scopus 로고
    • The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p
    • doi: 10.1007/s004380050916
    • Bojunga, N., Kotter, P., and Entian, K. D. (1998). The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p. Mol. Gen. Genet. 260, 453-461. doi: 10.1007/s004380050916
    • (1998) Mol. Gen. Genet. , vol.260 , pp. 453-461
    • Bojunga, N.1    Kotter, P.2    Entian, K.D.3
  • 16
    • 0014216690 scopus 로고
    • Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm
    • doi: 10.1016/S0006-291X(67)80007-X
    • Breidenbach, R. W., and Beevers, H. (1967). Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem. Biophys. Res. Commun. 27, 462-469. doi: 10.1016/S0006-291X(67)80007-X
    • (1967) Biochem. Biophys. Res. Commun. , vol.27 , pp. 462-469
    • Breidenbach, R.W.1    Beevers, H.2
  • 17
    • 77952919496 scopus 로고    scopus 로고
    • Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae
    • doi: 10.1074/jbc.M109.097188
    • Castegna, A., Scarcia, P., Agrimi, G., Palmieri, L., Rottensteiner, H., Spera, I., et al. (2010). Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J. Biol. Chem. 285, 17359-17370. doi: 10.1074/jbc.M109.097188
    • (2010) J. Biol. Chem. , vol.285 , pp. 17359-17370
    • Castegna, A.1    Scarcia, P.2    Agrimi, G.3    Palmieri, L.4    Rottensteiner, H.5    Spera, I.6
  • 18
    • 0037448455 scopus 로고    scopus 로고
    • Identification of an Arabidopsis mitochondrial succinate-fumarate translocator
    • doi: 10.1016/S0014-5793(02)03782-1
    • Catoni, E., Schwab, R., Hilpert, M., Desimone, M., Schwacke, R., Flugge, U. I., et al. (2003). Identification of an Arabidopsis mitochondrial succinate-fumarate translocator. FEBS Lett. 534, 87-92. doi: 10.1016/S0014-5793(02)03782-1
    • (2003) FEBS Lett , vol.534 , pp. 87-92
    • Catoni, E.1    Schwab, R.2    Hilpert, M.3    Desimone, M.4    Schwacke, R.5    Flugge, U.I.6
  • 19
    • 5644233748 scopus 로고    scopus 로고
    • Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase
    • doi: 10.1074/jbc.M407380200
    • Cornah, J. E., Germain, V., Ward, J. L., Beale, M. H., and Smith, S. M. (2004). Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase. J. Biol. Chem. 279, 42916-42923. doi: 10.1074/jbc.M407380200
    • (2004) J. Biol. Chem. , vol.279 , pp. 42916-42923
    • Cornah, J.E.1    Germain, V.2    Ward, J.L.3    Beale, M.H.4    Smith, S.M.5
  • 20
    • 0027205318 scopus 로고
    • Lack of aconitase in glyoxysomes and peroxisomes
    • Courtois-Verniquet, F., and Douce, R. (1993). Lack of aconitase in glyoxysomes and peroxisomes. Biochem. J. 294(Pt 1), 103-107.
    • (1993) Biochem. J. , vol.294 , Issue.PART 1 , pp. 103-107
    • Courtois-Verniquet, F.1    Douce, R.2
  • 21
    • 0013897667 scopus 로고
    • Peroxisomes (microbodies and related particles)
    • De Duve, C., and Baudhuin, P. (1966). Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323-357.
    • (1966) Physiol. Rev. , vol.46 , pp. 323-357
    • De Duve, C.1    Baudhuin, P.2
  • 22
    • 0034624977 scopus 로고    scopus 로고
    • Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle
    • doi: 10.1073/pnas.97.10.5669
    • Eastmond, P. J., Germain, V., Lange, P. R., Bryce, J. H., Smith, S. M., and Graham, I. A. (2000). Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc. Natl. Acad. Sci. U.S.A. 97, 5669-5674. doi: 10.1073/pnas.97.10.5669
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 5669-5674
    • Eastmond, P.J.1    Germain, V.2    Lange, P.R.3    Bryce, J.H.4    Smith, S.M.5    Graham, I.A.6
  • 23
    • 0035208660 scopus 로고    scopus 로고
    • Re-examining the role of the glyoxylate cycle in oilseeds
    • doi: 10.1016/S1360-1385(00)01835-5
    • Eastmond, P. J., and Graham, I. A. (2001). Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci. 6, 72-78. doi: 10.1016/S1360-1385(00)01835-5
    • (2001) Trends Plant Sci , vol.6 , pp. 72-78
    • Eastmond, P.J.1    Graham, I.A.2
  • 24
    • 0029058992 scopus 로고
    • Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene
    • Elgersma, Y., Van Roermund, C. W., Wanders, R. J., and Tabak, H. F. (1995). Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 14, 3472-3479.
    • (1995) EMBO J , vol.14 , pp. 3472-3479
    • Elgersma, Y.1    Van Roermund, C.W.2    Wanders, R.J.3    Tabak, H.F.4
  • 25
    • 0028859252 scopus 로고
    • Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p
    • doi: 10.1083/jcb.128.4.509
    • Erdmann, R., and Blobel, G. (1995). Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J. Cell Biol. 128, 509-523. doi: 10.1083/jcb.128.4.509
    • (1995) J. Cell Biol. , vol.128 , pp. 509-523
    • Erdmann, R.1    Blobel, G.2
  • 26
    • 0026522337 scopus 로고
    • The ICL1 gene from Saccharomyces cerevisiae
    • doi: 10.1111/j.1432-1033.1992.tb16720.x
    • Fernandez, E., Moreno, F., and Rodicio, R. (1992). The ICL1 gene from Saccharomyces cerevisiae. Eur. J. Biochem. 204, 983-990. doi: 10.1111/j.1432-1033.1992.tb16720.x
    • (1992) Eur. J. Biochem. , vol.204 , pp. 983-990
    • Fernandez, E.1    Moreno, F.2    Rodicio, R.3
  • 27
    • 0014608724 scopus 로고
    • Cytochemical localization of catalase in leaf microbodies (peroxisomes)
    • doi: 10.1083/jcb.43.2.343
    • Frederick, S. E., and Newcomb, E. H. (1969). Cytochemical localization of catalase in leaf microbodies (peroxisomes). J. Cell Biol. 43, 343-353. doi: 10.1083/jcb.43.2.343
    • (1969) J. Cell Biol. , vol.43 , pp. 343-353
    • Frederick, S.E.1    Newcomb, E.H.2
  • 28
    • 0025336743 scopus 로고
    • Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate
    • Gangloff, S. P., Marguet, D., and Lauquin, G. J. (1990). Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol. Cell. Biol. 10, 3551-3561.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 3551-3561
    • Gangloff, S.P.1    Marguet, D.2    Lauquin, G.J.3
  • 29
    • 0015976731 scopus 로고
    • Glycerol phosphate dehydrogenase in mammalian peroxisomes
    • doi: 10.1016/0003-9861(74)90250-1
    • Gee, R., McGroarty, E., Hsieh, B., Wied, D. M., and Tolbert, E. N. (1974). Glycerol phosphate dehydrogenase in mammalian peroxisomes. Arch. Biochem. Biophys. 161, 187-193. doi: 10.1016/0003-9861(74)90250-1
    • (1974) Arch. Biochem. Biophys. , vol.161 , pp. 187-193
    • Gee, R.1    McGroarty, E.2    Hsieh, B.3    Wied, D.M.4    Tolbert, E.N.5
  • 30
    • 41449118753 scopus 로고    scopus 로고
    • Specific elements of the glyoxylate pathway play a significant role in the functional transition of the soybean cotyledon during seedling development
    • doi: 10.1186/1471-2164-8-468
    • Gonzalez, D. O., and Vodkin, L. O. (2007). Specific elements of the glyoxylate pathway play a significant role in the functional transition of the soybean cotyledon during seedling development. BMC Genomics 8:468. doi: 10.1186/1471-2164-8-468
    • (2007) BMC Genomics , vol.8 , pp. 468
    • Gonzalez, D.O.1    Vodkin, L.O.2
  • 31
    • 61349180122 scopus 로고    scopus 로고
    • Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae
    • doi: 10.1111/j.1742-4658.2009.06903.x
    • Grunau, S., Mindthoff, S., Rottensteiner, H., Sormunen, R. T., Hiltunen, J. K., Erdmann, R., et al. (2009). Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae. FEBS J. 276, 1698-1708. doi: 10.1111/j.1742-4658.2009.06903.x
    • (2009) FEBS J , vol.276 , pp. 1698-1708
    • Grunau, S.1    Mindthoff, S.2    Rottensteiner, H.3    Sormunen, R.T.4    Hiltunen, J.K.5    Erdmann, R.6
  • 32
    • 0026469802 scopus 로고
    • Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae
    • doi: 10.1093/nar/20.21.5677
    • Hartig, A., Simon, M. M., Schuster, T., Daugherty, J. R., Yoo, H. S., and Cooper, T. G. (1992). Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucleic Acids Res. 20, 5677-5686. doi: 10.1093/nar/20.21.5677
    • (1992) Nucleic Acids Res , vol.20 , pp. 5677-5686
    • Hartig, A.1    Simon, M.M.2    Schuster, T.3    Daugherty, J.R.4    Yoo, H.S.5    Cooper, T.G.6
  • 33
    • 0034573311 scopus 로고    scopus 로고
    • Evolution of urate-degrading enzymes in animal peroxisomes
    • 32 Spring doi: 10.1385/CBB:32:1-3:123
    • Hayashi, S., Fujiwara, S., and Noguchi, T. (2000). Evolution of urate-degrading enzymes in animal peroxisomes. Cell Biochem. Biophys. 32 Spring, 123-129. doi: 10.1385/CBB:32:1-3:123
    • (2000) Cell Biochem. Biophys , pp. 123-129
    • Hayashi, S.1    Fujiwara, S.2    Noguchi, T.3
  • 35
    • 0026713679 scopus 로고
    • Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae molecular analysis of the fox2 gene and gene product
    • Hiltunen, J. K., Wenzel, B., Beyer, A., Erdmann, R., Fossa, A., and Kunau, W. H. (1992). Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae molecular analysis of the fox2 gene and gene product. J. Biol. Chem. 267, 6646-6653.
    • (1992) J. Biol. Chem. , vol.267 , pp. 6646-6653
    • Hiltunen, J.K.1    Wenzel, B.2    Beyer, A.3    Erdmann, R.4    Fossa, A.5    Kunau, W.H.6
  • 36
    • 2342629861 scopus 로고    scopus 로고
    • Acetate non-utilizing mutants of Arabidopsis: evidence that organic acids influence carbohydrate perception in germinating seedlings
    • doi: 10.1007/s00438-004-0985-9
    • Hooks, M. A., Turner, J. E., Murphy, E. C., and Graham, I. A. (2004). Acetate non-utilizing mutants of Arabidopsis: evidence that organic acids influence carbohydrate perception in germinating seedlings. Mol. Genet. Genomics 271, 249-256. doi: 10.1007/s00438-004-0985-9
    • (2004) Mol. Genet. Genomics , vol.271 , pp. 249-256
    • Hooks, M.A.1    Turner, J.E.2    Murphy, E.C.3    Graham, I.A.4
  • 37
    • 34548800247 scopus 로고    scopus 로고
    • The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism
    • doi: 10.1042/BJ20070258
    • Hooks, M. A., Turner, J. E., Murphy, E. C., Johnston, K. A., Burr, S., and Jaroslawski, S. (2007). The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism. Biochem. J. 406, 399-406. doi: 10.1042/BJ20070258
    • (2007) Biochem. J. , vol.406 , pp. 399-406
    • Hooks, M.A.1    Turner, J.E.2    Murphy, E.C.3    Johnston, K.A.4    Burr, S.5    Jaroslawski, S.6
  • 38
    • 84864485324 scopus 로고    scopus 로고
    • Plant peroxisomes: biogenesis and function.
    • doi: 10.1105/tpc.112.096586
    • Hu, J., Baker, A., Bartel, B., Linka, N., Mullen, R. T., Reumann, S., et al. (2012). Plant peroxisomes: biogenesis and function. Plant Cell 24, 2279-2303. doi: 10.1105/tpc.112.096586
    • (2012) Plant Cell , vol.24 , pp. 2279-2303
    • Hu, J.1    Baker, A.2    Bartel, B.3    Linka, N.4    Mullen, R.T.5    Reumann, S.6
  • 39
    • 0035180589 scopus 로고    scopus 로고
    • The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant
    • doi: 10.1093/nar/29.1.102
    • Huala, E., Dickerman, A. W., Garcia-Hernandez, M., Weems, D., Reiser, L., Lafond, F., et al. (2001). The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 29, 102-105. doi: 10.1093/nar/29.1.102
    • (2001) Nucleic Acids Res , vol.29 , pp. 102-105
    • Huala, E.1    Dickerman, A.W.2    Garcia-Hernandez, M.3    Weems, D.4    Reiser, L.5    Lafond, F.6
  • 41
    • 34248223568 scopus 로고    scopus 로고
    • Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation
    • doi: 10.1186/1745-6150-1-31
    • Kondrashov, F. A., Koonin, E. V., Morgunov, I. G., Finogenova, T. V., and Kondrashova, M. N. (2006). Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol. Direct 1, 31. doi: 10.1186/1745-6150-1-31
    • (2006) Biol. Direct , vol.1 , pp. 31
    • Kondrashov, F.A.1    Koonin, E.V.2    Morgunov, I.G.3    Finogenova, T.V.4    Kondrashova, M.N.5
  • 42
    • 0036183782 scopus 로고    scopus 로고
    • Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium
    • doi: 10.1046/j.0014-2956.2001.02727.x
    • Kunze, M., Kragler, F., Binder, M., Hartig, A., and Gurvitz, A. (2002). Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium. Eur. J. Biochem. 269, 915-922. doi: 10.1046/j.0014-2956.2001.02727.x
    • (2002) Eur. J. Biochem. , vol.269 , pp. 915-922
    • Kunze, M.1    Kragler, F.2    Binder, M.3    Hartig, A.4    Gurvitz, A.5
  • 43
    • 33845368338 scopus 로고    scopus 로고
    • A central role for the peroxisomal membrane in glyoxylate cycle function
    • doi: 10.1016/j.bbamcr.2006.09.009
    • Kunze, M., Pracharoenwattana, I., Smith, S. M., and Hartig, A. (2006). A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim. Biophys. Acta 1763, 1441-1452. doi: 10.1016/j.bbamcr.2006.09.009
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 1441-1452
    • Kunze, M.1    Pracharoenwattana, I.2    Smith, S.M.3    Hartig, A.4
  • 44
    • 0025247671 scopus 로고
    • Citrate synthase encoded by the CIT2 gene of Saccharomyces cerevisiae is peroxisomal
    • Lewin, A. S., Hines, V., and Small, G. M. (1990). Citrate synthase encoded by the CIT2 gene of Saccharomyces cerevisiae is peroxisomal. Mol. Cell. Biol. 10, 1399-1405.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 1399-1405
    • Lewin, A.S.1    Hines, V.2    Small, G.M.3
  • 45
    • 63149168967 scopus 로고    scopus 로고
    • Peroxisome-associated matrix protein degradation in Arabidopsis
    • doi: 10.1073/pnas.0811329106
    • Lingard, M. J., Monroe-Augustus, M., and Bartel, B. (2009). Peroxisome-associated matrix protein degradation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 4561-4566. doi: 10.1073/pnas.0811329106
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 4561-4566
    • Lingard, M.J.1    Monroe-Augustus, M.2    Bartel, B.3
  • 46
    • 0034461448 scopus 로고    scopus 로고
    • Van Der Klei, I. J., Van Dijken, J. P., and Pronk, J. T
    • doi: 10.1128/JB.182.24.7007-7013.2000
    • Luttik, M. A., Kotter, P., Salomons, F. A., Van Der Klei, I. J., Van Dijken, J. P., and Pronk, J. T. (2000). The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme a metabolism. J. Bacteriol. 182, 7007-7013. doi: 10.1128/JB.182.24.7007-7013.2000
    • (2000) J. Bacteriol. , vol.182 , pp. 7007-7013
    • Luttik, M.A.1    Kotter, P.2    Salomons, F.A.3
  • 47
    • 77955888015 scopus 로고    scopus 로고
    • Photorespiration: current status and approaches for metabolic engineering
    • doi: 10.1016/j.pbi.2010.01.006
    • Maurino, V. G., and Peterhansel, C. (2010). Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13, 249-256. doi: 10.1016/j.pbi.2010.01.006
    • (2010) Curr. Opin. Plant Biol. , vol.13 , pp. 249-256
    • Maurino, V.G.1    Peterhansel, C.2
  • 48
    • 0023448936 scopus 로고
    • Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase
    • McAlister-Henn, L., and Thompson, L. M. (1987). Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. J. Bacteriol. 169, 5157-5166.
    • (1987) J. Bacteriol. , vol.169 , pp. 5157-5166
    • McAlister-Henn, L.1    Thompson, L.M.2
  • 49
    • 0029763016 scopus 로고    scopus 로고
    • Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: isolation and characterization of Acn-mutants
    • McCammon, M. T. (1996). Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: isolation and characterization of Acn-mutants. Genetics 144, 57-69.
    • (1996) Genetics , vol.144 , pp. 57-69
    • McCammon, M.T.1
  • 50
    • 0025046371 scopus 로고
    • Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae
    • McCammon, M. T., Veenhuis, M., Trapp, S. B., and Goodman, J. M. (1990). Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J. Bacteriol. 172, 5816-5827.
    • (1990) J. Bacteriol. , vol.172 , pp. 5816-5827
    • McCammon, M.T.1    Veenhuis, M.2    Trapp, S.B.3    Goodman, J.M.4
  • 51
    • 0026020936 scopus 로고
    • Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase
    • Minard, K. I., and McAlister-Henn, L. (1991). Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase. Mol. Cell. Biol. 11, 370-380.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 370-380
    • Minard, K.I.1    McAlister-Henn, L.2
  • 52
    • 0037414458 scopus 로고    scopus 로고
    • Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence
    • doi: 10.1016/S0022-2836(03)00319-X
    • Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., and Eisenhaber, F. (2003). Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J. Mol. Biol. 328, 581-592. doi: 10.1016/S0022-2836(03)00319-X
    • (2003) J. Mol. Biol. , vol.328 , pp. 581-592
    • Neuberger, G.1    Maurer-Stroh, S.2    Eisenhaber, B.3    Hartig, A.4    Eisenhaber, F.5
  • 53
    • 82555192450 scopus 로고    scopus 로고
    • D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study
    • doi: 10.1016/j.jchromb.2011.06.028
    • Ohide, H., Miyoshi, Y., Maruyama, R., Hamase, K., and Konno, R. (2011). D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 3162-3168. doi: 10.1016/j.jchromb.2011.06.028
    • (2011) J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. , vol.879 , pp. 3162-3168
    • Ohide, H.1    Miyoshi, Y.2    Maruyama, R.3    Hamase, K.4    Konno, R.5
  • 54
    • 78650856488 scopus 로고    scopus 로고
    • Membrane curvature during peroxisome fission requires Pex11
    • doi: 10.1038/emboj.2010.299
    • Opalinski, L., Kiel, J. A., Williams, C., Veenhuis, M., and Van Der Klei, I. J. (2011). Membrane curvature during peroxisome fission requires Pex11. EMBO J. 30, 5-16. doi: 10.1038/emboj.2010.299
    • (2011) EMBO J , vol.30 , pp. 5-16
    • Opalinski, L.1    Kiel, J.A.2    Williams, C.3    Veenhuis, M.4    Van Der Klei, I.J.5
  • 55
    • 0035903573 scopus 로고    scopus 로고
    • Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter
    • doi: 10.1093/emboj/20.18.5049
    • Palmieri, L., Rottensteiner, H., Girzalsky, W., Scarcia, P., Palmieri, F., and Erdmann, R. (2001). Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J. 20, 5049-5059. doi: 10.1093/emboj/20.18.5049
    • (2001) EMBO J , vol.20 , pp. 5049-5059
    • Palmieri, L.1    Rottensteiner, H.2    Girzalsky, W.3    Scarcia, P.4    Palmieri, F.5    Erdmann, R.6
  • 56
    • 0028923497 scopus 로고
    • Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene. Plant aconitase show significant homology with mammalian iron-responsive element-binding protein.
    • doi: 10.1074/jbc.270.14.8131
    • Peyret, P., Perez, P., and Alric, M. (1995). Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene. Plant aconitase show significant homology with mammalian iron-responsive element-binding protein. J. Biol. Chem. 270, 8131-8137. doi: 10.1074/jbc.270.14.8131
    • (1995) J. Biol. Chem. , vol.270 , pp. 8131-8137
    • Peyret, P.1    Perez, P.2    Alric, M.3
  • 57
    • 84874233394 scopus 로고    scopus 로고
    • PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters
    • doi: 10.1073/pnas.1215142110
    • Pick, T. R., Brautigam, A., Schulz, M. A., Obata, T., Fernie, A. R., and Weber, A. P. (2013). PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc. Natl. Acad. Sci. U.S.A. 110, 3185-3190. doi: 10.1073/pnas.1215142110
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 3185-3190
    • Pick, T.R.1    Brautigam, A.2    Schulz, M.A.3    Obata, T.4    Fernie, A.R.5    Weber, A.P.6
  • 58
    • 55549099259 scopus 로고    scopus 로고
    • Van den Burg, J., Strijbis, K., Van Roermund, C., et al
    • doi: 10.1099/mic.0.2008/020289-0
    • Piekarska, K., Hardy, G., Mol, E., Van den Burg, J., Strijbis, K., Van Roermund, C., et al. (2008). The activity of the glyoxylate cycle in peroxisomes of Candida albicans depends on a functional beta-oxidation pathway: evidence for reduced metabolite transport across the peroxisomal membrane. Microbiology 154, 3061-3072. doi: 10.1099/mic.0.2008/020289-0
    • (2008) Microbiology , vol.154 , pp. 3061-3072
    • Piekarska, K.1    Hardy, G.2    Mol, E.3
  • 59
    • 33644802667 scopus 로고    scopus 로고
    • Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination.
    • doi: 10.1105/tpc.105.031856
    • Pracharoenwattana, I., Cornah, J. E., and Smith, S. M. (2005). Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17, 2037-2048. doi: 10.1105/tpc.105.031856
    • (2005) Plant Cell , vol.17 , pp. 2037-2048
    • Pracharoenwattana, I.1    Cornah, J.E.2    Smith, S.M.3
  • 60
    • 34247330193 scopus 로고    scopus 로고
    • Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle
    • doi: 10.1111/j.1365-313X.2007.03055.x
    • Pracharoenwattana, I., Cornah, J. E., and Smith, S. M. (2007). Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle. Plant J. 50, 381-390. doi: 10.1111/j.1365-313X.2007.03055.x
    • (2007) Plant J , vol.50 , pp. 381-390
    • Pracharoenwattana, I.1    Cornah, J.E.2    Smith, S.M.3
  • 61
    • 53149107067 scopus 로고    scopus 로고
    • When is a peroxisome not a peroxisome?
    • Pracharoenwattana, I., and Smith, S. M. (2008). When is a peroxisome not a peroxisome? Trends Plant Sci. 13, 522-525.
    • (2008) Trends Plant Sci , vol.13 , pp. 522-525
    • Pracharoenwattana, I.1    Smith, S.M.2
  • 62
    • 24344441532 scopus 로고    scopus 로고
    • Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing
    • doi: 10.1091/mbc.E04-11-1028
    • Regev-Rudzki, N., Karniely, S., Ben-Haim, N. N., and Pines, O. (2005). Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol. Biol. Cell 16, 4163-4171. doi: 10.1091/mbc.E04-11-1028
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4163-4171
    • Regev-Rudzki, N.1    Karniely, S.2    Ben-Haim, N.N.3    Pines, O.4
  • 63
    • 0031400792 scopus 로고    scopus 로고
    • Evidence for the presence of a porin in the membrane of glyoxysomes of castor bean
    • Reumann, S., Bettermann, M., Benz, R., and Heldt, H. W. (1997). Evidence for the presence of a porin in the membrane of glyoxysomes of castor bean. Plant Physiol. 115, 891-899.
    • (1997) Plant Physiol , vol.115 , pp. 891-899
    • Reumann, S.1    Bettermann, M.2    Benz, R.3    Heldt, H.W.4
  • 64
    • 0029081876 scopus 로고
    • The membrane of leaf peroxisomes contains a porin-like channel
    • doi: 10.1074/jbc.270.29.17559
    • Reumann, S., Maier, E., Benz, R., and Heldt, H. W. (1995). The membrane of leaf peroxisomes contains a porin-like channel. J. Biol. Chem. 270, 17559-17565. doi: 10.1074/jbc.270.29.17559
    • (1995) J. Biol. Chem. , vol.270 , pp. 17559-17565
    • Reumann, S.1    Maier, E.2    Benz, R.3    Heldt, H.W.4
  • 65
    • 0032518424 scopus 로고    scopus 로고
    • Permeability properties of the porin of spinach leaf peroxisomes
    • doi: 10.1046/j.1432-1327.1998.2510359.x
    • Reumann, S., Maier, E., Heldt, H. W., and Benz, R. (1998). Permeability properties of the porin of spinach leaf peroxisomes. Eur. J. Biochem. 251, 359-366. doi: 10.1046/j.1432-1327.1998.2510359.x
    • (1998) Eur. J. Biochem. , vol.251 , pp. 359-366
    • Reumann, S.1    Maier, E.2    Heldt, H.W.3    Benz, R.4
  • 66
    • 64549157197 scopus 로고    scopus 로고
    • Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane
    • doi: 10.1371/journal.pone.0005090
    • Rokka, A., Antonenkov, V. D., Soininen, R., Immonen, H. L., Pirila, P. L., Bergmann, U., et al. (2009). Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS ONE 4:e5090. doi: 10.1371/journal.pone.0005090
    • (2009) PLoS ONE , vol.4
    • Rokka, A.1    Antonenkov, V.D.2    Soininen, R.3    Immonen, H.L.4    Pirila, P.L.5    Bergmann, U.6
  • 67
    • 0034951257 scopus 로고    scopus 로고
    • Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana
    • doi: 10.1042/BST0290283
    • Rylott, E. L., Hooks, M. A., and Graham, I. A. (2001). Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem. Soc. Trans. 29, 283-287. doi: 10.1042/BST0290283
    • (2001) Biochem. Soc. Trans. , vol.29 , pp. 283-287
    • Rylott, E.L.1    Hooks, M.A.2    Graham, I.A.3
  • 68
    • 84864038743 scopus 로고    scopus 로고
    • Primary hyperoxalurias: disorders of glyoxylate detoxification
    • doi: 10.1016/j.bbadis.2012.03.004
    • Salido, E., Pey, A. L., Rodriguez, R., and Lorenzo, V. (2012). Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim. Biophys. Acta 1822, 1453-1464. doi: 10.1016/j.bbadis.2012.03.004
    • (2012) Biochim. Biophys. Acta , vol.1822 , pp. 1453-1464
    • Salido, E.1    Pey, A.L.2    Rodriguez, R.3    Lorenzo, V.4
  • 69
    • 33846495739 scopus 로고    scopus 로고
    • Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts
    • doi: 10.1073/pnas.0610402104
    • Schumann, U., Prestele, J., O'Geen, H., Brueggeman, R., Wanner, G., and Gietl, C. (2007). Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 104, 1069-1074. doi: 10.1073/pnas.0610402104
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 1069-1074
    • Schumann, U.1    Prestele, J.2    O'Geen, H.3    Brueggeman, R.4    Wanner, G.5    Gietl, C.6
  • 70
    • 79953236571 scopus 로고    scopus 로고
    • Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants
    • doi: 10.1111/j.1365-313X.2011.04512.x
    • Shockey, J., and Browse, J. (2011). Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J. 66, 143-160. doi: 10.1111/j.1365-313X.2011.04512.x
    • (2011) Plant J , vol.66 , pp. 143-160
    • Shockey, J.1    Browse, J.2
  • 71
    • 0023061429 scopus 로고
    • Complexes of sequential metabolic enzymes
    • doi: 10.1146/annurev.bi.56.070187.000513
    • Srere, P. A. (1987). Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56, 89-124. doi: 10.1146/annurev.bi.56.070187.000513
    • (1987) Annu. Rev. Biochem. , vol.56 , pp. 89-124
    • Srere, P.A.1
  • 72
    • 0026469192 scopus 로고
    • Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase
    • Steffan, J. S., and McAlister-Henn, L. (1992). Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase. J. Biol. Chem. 267, 24708-24715.
    • (1992) J. Biol. Chem. , vol.267 , pp. 24708-24715
    • Steffan, J.S.1    McAlister-Henn, L.2
  • 73
    • 77955283747 scopus 로고    scopus 로고
    • Van den Burg, J., Van den Berg, M., Hardy, G. P., Wanders, R. J., et al
    • doi: 10.1074/jbc.M109.094250
    • Strijbis, K., Van Roermund, C. W., Van den Burg, J., Van den Berg, M., Hardy, G. P., Wanders, R. J., et al. (2010). Contributions of carnitine acetyltransferases to intracellular acetyl unit transport in Candida albicans. J. Biol. Chem. 285, 24335-24346. doi: 10.1074/jbc.M109.094250
    • (2010) J. Biol. Chem. , vol.285 , pp. 24335-24346
    • Strijbis, K.1    Van Roermund, C.W.2
  • 74
    • 0034985293 scopus 로고    scopus 로고
    • Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain
    • doi: 10.1002/yea.712
    • Swiegers, J. H., Dippenaar, N., Pretorius, I. S., and Bauer, F. F. (2001). Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18, 585-595. doi: 10.1002/yea.712
    • (2001) Yeast , vol.18 , pp. 585-595
    • Swiegers, J.H.1    Dippenaar, N.2    Pretorius, I.S.3    Bauer, F.F.4
  • 75
    • 0029852428 scopus 로고    scopus 로고
    • Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae
    • Taylor, K. M., Kaplan, C. P., Gao, X., and Baker, A. (1996). Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae. Biochem. J. 319(Pt 1), 255-262.
    • (1996) Biochem. J. , vol.319 , Issue.PART 1 , pp. 255-262
    • Taylor, K.M.1    Kaplan, C.P.2    Gao, X.3    Baker, A.4
  • 76
    • 84861678089 scopus 로고    scopus 로고
    • Seed storage oil catabolism: a story of give and take
    • doi: 10.1016/j.pbi.2012.03.017
    • Theodoulou, F. L., and Eastmond, P. J. (2012). Seed storage oil catabolism: a story of give and take. Curr. Opin. Plant Biol. 15, 322-328. doi: 10.1016/j.pbi.2012.03.017
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 322-328
    • Theodoulou, F.L.1    Eastmond, P.J.2
  • 77
    • 0022395410 scopus 로고
    • Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy
    • doi: 10.1083/jcb.101.4.1288
    • Titus, D. E., and Becker, W. M. (1985). Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J. Cell Biol. 101, 1288-1299. doi: 10.1083/jcb.101.4.1288
    • (1985) J. Cell Biol. , vol.101 , pp. 1288-1299
    • Titus, D.E.1    Becker, W.M.2
  • 78
    • 78249239147 scopus 로고    scopus 로고
    • Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis
    • doi: 10.1104/pp.110.161612
    • Tomaz, T., Bagard, M., Pracharoenwattana, I., Linden, P., Lee, C. P., Carroll, A. J., et al. (2010). Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol. 154, 1143-1157. doi: 10.1104/pp.110.161612
    • (2010) Plant Physiol , vol.154 , pp. 1143-1157
    • Tomaz, T.1    Bagard, M.2    Pracharoenwattana, I.3    Linden, P.4    Lee, C.P.5    Carroll, A.J.6
  • 79
    • 13244299298 scopus 로고    scopus 로고
    • Characterization of Arabidopsis fluoroacetate-resistant mutants reveals the principal mechanism of acetate activation for entry into the glyoxylate cycle
    • doi: 10.1074/jbc.M407291200
    • Turner, J. E., Greville, K., Murphy, E. C., and Hooks, M. A. (2005). Characterization of Arabidopsis fluoroacetate-resistant mutants reveals the principal mechanism of acetate activation for entry into the glyoxylate cycle. J. Biol. Chem. 280, 2780-2787. doi: 10.1074/jbc.M407291200
    • (2005) J. Biol. Chem. , vol.280 , pp. 2780-2787
    • Turner, J.E.1    Greville, K.2    Murphy, E.C.3    Hooks, M.A.4
  • 80
    • 0030875237 scopus 로고    scopus 로고
    • Characterization of the intron-containing citrate synthase gene from the alkanotrophic yeast Candida tropicalis: cloning and expression in Saccharomyces cerevisiae
    • doi: 10.1007/s002030050463
    • Ueda, M., Sanuki, S., Kawachi, H., Shimizu, K., Atomi, H., and Tanaka, A. (1997). Characterization of the intron-containing citrate synthase gene from the alkanotrophic yeast Candida tropicalis: cloning and expression in Saccharomyces cerevisiae. Arch. Microbiol. 168, 8-15. doi: 10.1007/s002030050463
    • (1997) Arch. Microbiol. , vol.168 , pp. 8-15
    • Ueda, M.1    Sanuki, S.2    Kawachi, H.3    Shimizu, K.4    Atomi, H.5    Tanaka, A.6
  • 81
    • 0032530934 scopus 로고    scopus 로고
    • Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme a metabolism
    • Van den Berg, M., De Jong-Gubbels, P., and Hy, S. (1998). Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme a metabolism. Yeast 14, 1089-1104.
    • (1998) Yeast , vol.14 , pp. 1089-1104
    • Van den Berg, M.1    De Jong-Gubbels, P.2    Hy, S.3
  • 82
    • 0029064219 scopus 로고
    • The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions
    • Van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J., and Tabak, H. F. (1995). The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 3480-3486.
    • (1995) EMBO J , vol.14 , pp. 3480-3486
    • Van Roermund, C.W.1    Elgersma, Y.2    Singh, N.3    Wanders, R.J.4    Tabak, H.F.5
  • 83
    • 0032472937 scopus 로고    scopus 로고
    • Van den Berg, M., Tabak, H. F., and Wanders, R. J
    • doi: 10.1093/emboj/17.3.677
    • Van Roermund, C. W., Hettema, E. H., Kal, A. J., Van den Berg, M., Tabak, H. F., and Wanders, R. J. (1998). Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. EMBO J. 17, 677-687. doi: 10.1093/emboj/17.3.677
    • (1998) EMBO J , vol.17 , pp. 677-687
    • Van Roermund, C.W.1    Hettema, E.H.2    Kal, A.J.3
  • 84
    • 0033231013 scopus 로고    scopus 로고
    • Van den Berg, M., Tabak, H. F., and Wanders, R. J
    • doi: 10.1093/emboj/18.21.5843
    • Van Roermund, C. W., Hettema, E. H., Van den Berg, M., Tabak, H. F., and Wanders, R. J. (1999). Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 18, 5843-5852. doi: 10.1093/emboj/18.21.5843
    • (1999) , vol.18 , pp. 5843-5852
    • Van Roermund, C.W.1    Hettema, E.H.2
  • 85
    • 0034617992 scopus 로고    scopus 로고
    • Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae
    • doi: 10.1083/jcb.150.3.489
    • Van Roermund, C. W., Tabak, H. F., Van den Berg, M., Wanders, R. J., and Hettema, E. H. (2000). Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J. Cell Biol. 150, 489-498. doi: 10.1083/jcb.150.3.489
    • (2000) J. Cell Biol. , vol.150 , pp. 489-498
    • Van Roermund, C.W.1    Tabak, H.F.2    Van den Berg, M.3    Wanders, R.J.4    Hettema, E.H.5
  • 86
    • 0023664229 scopus 로고
    • Permeability of the peroxisomal membrane to cofactors of beta-oxidation. evidence for the presence of a pore-forming protein
    • Van Veldhoven, P. P., Just, W. W., and Mannaerts, G. P. (1987). Permeability of the peroxisomal membrane to cofactors of beta-oxidation. evidence for the presence of a pore-forming protein. J. Biol. Chem. 262, 4310-4318.
    • (1987) J. Biol. Chem. , vol.262 , pp. 4310-4318
    • Van Veldhoven, P.P.1    Just, W.W.2    Mannaerts, G.P.3
  • 87
    • 0027422105 scopus 로고
    • Permeability properties of peroxisomes in digitonin-permeabilized rat hepatocytes. Evidence for free permeability towards a variety of substrates.
    • doi: 10.1111/j.1432-1033.1993.tb18353.x
    • Verleur, N., and Wanders, R. J. (1993). Permeability properties of peroxisomes in digitonin-permeabilized rat hepatocytes. Evidence for free permeability towards a variety of substrates. Eur. J. Biochem. 218, 75-82. doi: 10.1111/j.1432-1033.1993.tb18353.x
    • (1993) Eur. J. Biochem. , vol.218 , pp. 75-82
    • Verleur, N.1    Wanders, R.J.2
  • 88
    • 0025851581 scopus 로고
    • Rapid inactivation of plant aconitase by hydrogen peroxide
    • Verniquet, F., Gaillard, J., Neuburger, M., and Douce, R. (1991). Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem. J. 276 (Pt 3), 643-648.
    • (1991) Biochem. J. , vol.276 , Issue.PART 3 , pp. 643-648
    • Verniquet, F.1    Gaillard, J.2    Neuburger, M.3    Douce, R.4
  • 89
    • 33846535333 scopus 로고    scopus 로고
    • Metabolite transport across the peroxisomal membrane
    • doi: 10.1042/BJ20061352
    • Visser, W. F., Van Roermund, C. W., Ijlst, L., Waterham, H. R., and Wanders, R. J. (2007). Metabolite transport across the peroxisomal membrane. Biochem. J. 401, 365-375. doi: 10.1042/BJ20061352
    • (2007) Biochem. J. , vol.401 , pp. 365-375
    • Visser, W.F.1    Van Roermund, C.W.2    Ijlst, L.3    Waterham, H.R.4    Wanders, R.J.5
  • 90
    • 33746366462 scopus 로고    scopus 로고
    • Biochemistry of mammalian peroxisomes revisited
    • doi: 10.1146/annurev.biochem.74.082803.133329
    • Wanders, R. J., and Waterham, H. R. (2006). Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75, 295-332. doi: 10.1146/annurev.biochem.74.082803.133329
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 295-332
    • Wanders, R.J.1    Waterham, H.R.2
  • 91
    • 84864035138 scopus 로고    scopus 로고
    • Metabolic functions and biogenesis of peroxisomes in health and disease
    • 1822, 1325.doi: 10.1016/j.bbadis.2012.06.001
    • Waterham, H. R., and Wanders, R. J. (2012). Metabolic functions and biogenesis of peroxisomes in health and disease. Biochim. Biophys. Acta 1822, 1325. doi: 10.1016/j.bbadis.2012.06.001
    • (2012) Biochim. Biophys. Acta
    • Waterham, H.R.1    Wanders, R.J.2
  • 92
    • 79959871745 scopus 로고    scopus 로고
    • The biochemistry of nitrogen mobilization: purine ring catabolism
    • doi: 10.1016/j.tplants.2011.03.012
    • Werner, A. K., and Witte, C. P. (2011). The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci. 16, 381-387. doi: 10.1016/j.tplants.2011.03.012
    • (2011) Trends Plant Sci , vol.16 , pp. 381-387
    • Werner, A.K.1    Witte, C.P.2
  • 93
    • 13544277439 scopus 로고    scopus 로고
    • A protective association between catalase and isocitrate lyase in peroxisomes
    • doi: 10.1016/j.abb.2004.12.017
    • Yanik, T., and Donaldson, R. P. (2005). A protective association between catalase and isocitrate lyase in peroxisomes. Arch. Biochem. Biophys. 435, 243-252. doi: 10.1016/j.abb.2004.12.017
    • (2005) Arch. Biochem. Biophys. , vol.435 , pp. 243-252
    • Yanik, T.1    Donaldson, R.P.2
  • 94
    • 39749093831 scopus 로고    scopus 로고
    • Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans
    • doi: 10.1099/mic.0.2007/014555-0
    • Zhou, H., and Lorenz, M. C. (2008). Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans. Microbiology 154, 500-509. doi: 10.1099/mic.0.2007/014555-0
    • (2008) Microbiology , vol.154 , pp. 500-509
    • Zhou, H.1    Lorenz, M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.