메뉴 건너뛰기




Volumn 21, Issue 3, 2012, Pages 595-610

A deterministic model selection scheme for incremental RBFNN construction in time series forecasting

Author keywords

Incremental strategy; Neural models selection; Radial basis function neural networks; Time series analysis

Indexed keywords

COMBINED ALGORITHMS; COMPUTATION TIME; COMPUTATIONAL COSTS; CROSS VALIDATION; DETERMINISTIC MODELS; INCREMENTAL STRATEGY; MODEL PREDICTION; MODEL SELECTION; NETWORK MODELS; NEURAL MODELS; RADIAL BASIS FUNCTION NEURAL NETWORKS; TIME SERIES FORECASTING; TIME SERIES PREDICTION; VALIDATION SETS;

EID: 84858110694     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0466-5     Document Type: Article
Times cited : (5)

References (51)
  • 2
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • Qi M, Zhang GP (2001) An investigation of model selection criteria for neural network time series forecasting. Eur J Oper Res 132: 666-680.
    • (2001) Eur J Oper Res , vol.132 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 3
    • 42949095215 scopus 로고    scopus 로고
    • The application of ridge polynomial neural network to multi-step ahead financial time series prediction
    • Ghazali R, Hussain AJ et al (2008) The application of ridge polynomial neural network to multi-step ahead financial time series prediction. Neural Comput Appl 17(3): 311-323.
    • (2008) Neural Comput Appl , vol.17 , Issue.3 , pp. 311-323
    • Ghazali, R.1    Hussain, A.J.2
  • 5
    • 33748424239 scopus 로고    scopus 로고
    • The effect of different basis functions on a radial basis function network for time series prediction: a comparative study
    • Harpham C, Dawson CW (2006) The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing 69: 2161-2170.
    • (2006) Neurocomputing , vol.69 , pp. 2161-2170
    • Harpham, C.1    Dawson, C.W.2
  • 6
    • 40649090413 scopus 로고    scopus 로고
    • Time series prediction using evolving radial basis function neural networks with new encoding scheme
    • Du H, Zhang N (2008) Time series prediction using evolving radial basis function neural networks with new encoding scheme. Neurocomputing 71: 1388-1400.
    • (2008) Neurocomputing , vol.71 , pp. 1388-1400
    • Du, H.1    Zhang, N.2
  • 7
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14: 35-62.
    • (1998) Int J Forecast , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 8
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: an empirical evaluation
    • Menezes JMP, Barreto GA (2008) Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 71(16): 3335-3343.
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3335-3343
    • Menezes, J.M.P.1    Barreto, G.A.2
  • 9
    • 34249070122 scopus 로고    scopus 로고
    • A hierarchical neural model with time windows in long-term electrical load forecasting
    • Carpinteiro OAS, Lima I et al (2006) A hierarchical neural model with time windows in long-term electrical load forecasting. Neural Comput Appl 16(4-5): 465-470.
    • (2006) Neural Comput Appl , vol.16 , Issue.4-5 , pp. 465-470
    • Carpinteiro, O.A.S.1    Lima, I.2
  • 10
    • 29544445640 scopus 로고    scopus 로고
    • A time-series prediction approach for feature extraction in a brain-computer interface
    • Coyle D, Prasad G, McGinnity TM (2006) A time-series prediction approach for feature extraction in a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 13(4): 461-467.
    • (2006) IEEE Trans Neural Syst Rehabil Eng , vol.13 , Issue.4 , pp. 461-467
    • Coyle, D.1    Prasad, G.2    McGinnity, T.M.3
  • 11
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques-case study: river flow forecasting
    • Atiya AF, El-Shoura SM, Shaheen SI, El-Sherif MS (1999) A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans Neural Netw 10((2): 402-409.
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 13
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Park J, Sandberg IW (1991) Universal approximation using radial basis function networks. Neural Comput 3(2): 246-257.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 14
    • 65249163364 scopus 로고    scopus 로고
    • On incremental framework based on cross-validation for estimating the architecture of a multilayer perceptron
    • Aran O, Yildiz OT, Alpaydin E (2009) On incremental framework based on cross-validation for estimating the architecture of a multilayer perceptron. Int J Pattern Recognit Aritif Intell 23(2): 159-190.
    • (2009) Int J Pattern Recognit Aritif Intell , vol.23 , Issue.2 , pp. 159-190
    • Aran, O.1    Yildiz, O.T.2    Alpaydin, E.3
  • 15
    • 0031233488 scopus 로고    scopus 로고
    • Kernel orthonormalization in radial basis function neural networks
    • Kaminski W, Strumillo P (1997) Kernel orthonormalization in radial basis function neural networks. IEEE Trans Neural Netw 8(5): 1177-1183.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.5 , pp. 1177-1183
    • Kaminski, W.1    Strumillo, P.2
  • 16
    • 0033732354 scopus 로고    scopus 로고
    • Selecting radial basis function network centers with recursive orthogonal least squares training
    • Gomm JB, Yu DL (2000) Selecting radial basis function network centers with recursive orthogonal least squares training. IEEE Trans Neural Netw 11(2): 306-314.
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.2 , pp. 306-314
    • Gomm, J.B.1    Yu, D.L.2
  • 17
    • 8644285354 scopus 로고    scopus 로고
    • Reducing the number of neurons in radial basis function networks with dynamic decay adjustment
    • Paetz J (2004) Reducing the number of neurons in radial basis function networks with dynamic decay adjustment. Neuro Comput 62: 79-91.
    • (2004) Neuro Comput , vol.62 , pp. 79-91
    • Paetz, J.1
  • 18
    • 0003526044 scopus 로고
    • GAL: networks that grow when they learn and shrink when they forget
    • Technical report, TR-91-032, ICSI, Berkeley, CA
    • Alpaydin E (1991) GAL: networks that grow when they learn and shrink when they forget. Technical report, TR-91-032, ICSI, Berkeley, CA.
    • (1991)
    • Alpaydin, E.1
  • 19
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T, Yeung D (1997) Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans Neural Netw 8(3): 630-645.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.1    Yeung, D.2
  • 20
    • 0036254949 scopus 로고    scopus 로고
    • Detection of small objects in clutter using a GA-RBF neural network
    • Leung H, Dubash N, Xie N (2002) Detection of small objects in clutter using a GA-RBF neural network. IEEE Trans Aerosp Eelctron Syst 38(1): 98-118.
    • (2002) IEEE Trans Aerosp Eelctron Syst , vol.38 , Issue.1 , pp. 98-118
    • Leung, H.1    Dubash, N.2    Xie, N.3
  • 21
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Tsahkadsor, Armenian SSR
    • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: International symposium on information theory, 2nd edn. Tsahkadsor, Armenian SSR, pp 267-281.
    • (1973) International symposium on information theory, 2nd edn , pp. 267-281
    • Akaike, H.1
  • 22
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6: 461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J (1975) Modeling by shortest data description. Automatica 14: 465-471.
    • (1975) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 25
    • 33746874813 scopus 로고    scopus 로고
    • An incremental training method for the probabilistic RBF network
    • Constantinopoulos C, Likas A (2006) An incremental training method for the probabilistic RBF network. IEEE Trans Neural Netw 17(4): 966-974.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 966-974
    • Constantinopoulos, C.1    Likas, A.2
  • 26
    • 33750535466 scopus 로고    scopus 로고
    • Predicting chaotic time series using neural and neurofuzzy models: a comparative study
    • Gholipour A, Araabi BN, Lucas C (2006) Predicting chaotic time series using neural and neurofuzzy models: a comparative study. Neural Process Lett 24: 217-239.
    • (2006) Neural Process Lett , vol.24 , pp. 217-239
    • Gholipour, A.1    Araabi, B.N.2    Lucas, C.3
  • 28
    • 0031536511 scopus 로고    scopus 로고
    • On cross-validation: The 632+ bootstrap method
    • Efron B, Tibshirani RJ (1997) On cross-validation: The 632+ bootstrap method. J Am Stat Assoc 92: 548-560.
    • (1997) J Am Stat Assoc , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.J.2
  • 29
    • 0003396255 scopus 로고
    • Neural Network Toolbox 6 User's Guide
    • The MathWorks, Inc
    • Neural Network Toolbox 6 User's Guide (1992-2009) The MathWorks, Inc.
    • (1992)
  • 33
    • 0001002401 scopus 로고
    • Approximation and radial basis function networks
    • Park J, Sandberg IW (1993) Approximation and radial basis function networks. Neural Comput 5: 305-316.
    • (1993) Neural Comput , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 34
    • 0345328110 scopus 로고    scopus 로고
    • On the kernel widths in radial basis function networks
    • Benoudjit N, Verleysen M (2003) On the kernel widths in radial basis function networks. Neural Process Lett 18(2): 139-154.
    • (2003) Neural Process Lett , vol.18 , Issue.2 , pp. 139-154
    • Benoudjit, N.1    Verleysen, M.2
  • 35
    • 0031270611 scopus 로고    scopus 로고
    • Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques
    • Karayiannis NB, Mi GW (1997) Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques. IEEE Trans Neural Netw 8(6): 1492-1506.
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.6 , pp. 1492-1506
    • Karayiannis, N.B.1    Mi, G.W.2
  • 36
    • 0004236492 scopus 로고
    • Baltimore: The Johns Hopkins University Press
    • Golub G, Loan CV (1961) Matrix computations. The Johns Hopkins University Press, Baltimore.
    • (1961) Matrix Computations
    • Golub, G.1    Loan, C.V.2
  • 37
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • González J, Rojas I, Ortega J et al (2003) Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Trans Neural Netw 14(6): 1478-1495.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.6 , pp. 1478-1495
    • González, J.1    Rojas, I.2    Ortega, J.3
  • 38
    • 33751433063 scopus 로고    scopus 로고
    • ANN-based estimator for distillation using Levenberg-Marquardt approach
    • Singh V, Gupta I, Gupta HO (2007) ANN-based estimator for distillation using Levenberg-Marquardt approach. Eng Appl Artif Ingell 20: 249-259.
    • (2007) Eng Appl Artif Ingell , vol.20 , pp. 249-259
    • Singh, V.1    Gupta, I.2    Gupta, H.O.3
  • 39
    • 0017185443 scopus 로고
    • Simple mathematical models with very complicated dynamics
    • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261: 459-467.
    • (1976) Nature , vol.261 , pp. 459-467
    • May, R.M.1
  • 40
    • 0002591468 scopus 로고
    • A two-dimensional mapping with a strange attractor
    • Hénon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50(1): 69-77.
    • (1976) Commun Math Phys , vol.50 , Issue.1 , pp. 69-77
    • Hénon, M.1
  • 41
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control-systems
    • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control-systems. Science 197(4300): 287-289.
    • (1977) Science , vol.197 , Issue.4300 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 42
    • 32544437144 scopus 로고    scopus 로고
    • Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series
    • Jayawardena AW, Xu PC et al (2006) Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series. Hydrological Sci J 51(1): 21-44.
    • (2006) Hydrological Sci J , vol.51 , Issue.1 , pp. 21-44
    • Jayawardena, A.W.1    Xu, P.C.2
  • 44
    • 21244438033 scopus 로고    scopus 로고
    • Time-series forecasting using flexible neural tree model
    • Chen YH, Yang B et al (2005) Time-series forecasting using flexible neural tree model. Inf Sci 174(3-4): 219-235.
    • (2005) Inf Sci , vol.174 , Issue.3-4 , pp. 219-235
    • Chen, Y.H.1    Yang, B.2
  • 47
    • 34249013692 scopus 로고    scopus 로고
    • Predicting service request in support centres based on nonlinear dynamics, ARMA modeling and neural networks
    • Balaguer E, Palomares A, Soria E, Martin-Guerrero JD (2008) Predicting service request in support centres based on nonlinear dynamics, ARMA modeling and neural networks. Expert Syst Appl 34(1): 665-672.
    • (2008) Expert Syst Appl , vol.34 , Issue.1 , pp. 665-672
    • Balaguer, E.1    Palomares, A.2    Soria, E.3    Martin-Guerrero, J.D.4
  • 48
    • 70349104620 scopus 로고    scopus 로고
    • Time series prediction with multilayer perceptron (MLP): a new generalized error based approach
    • Shiblee M, Kalra PK, Chandra B (2009) Time series prediction with multilayer perceptron (MLP): a new generalized error based approach. Adv Neuro-Inf Process 5507: 37-44.
    • (2009) Adv Neuro-Inf Process , vol.5507 , pp. 37-44
    • Shiblee, M.1    Kalra, P.K.2    Chandra, B.3
  • 49
    • 77957840499 scopus 로고    scopus 로고
    • An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange
    • Boyacioglu MA, Avci D (2010) An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Syst Appl 37(12): 7908-7912.
    • (2010) Expert Syst Appl , vol.37 , Issue.12 , pp. 7908-7912
    • Boyacioglu, M.A.1    Avci, D.2
  • 51
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5): 359-366.
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.