메뉴 건너뛰기




Volumn 21, Issue 3, 2011, Pages 247-263

Generating balanced learning and test sets for function approximation problems

Author keywords

Clustering; data distribution; function approximation; least squares support vector machines; nearest neighbor

Indexed keywords

CLUSTERING; DATA DISTRIBUTION; FUNCTION APPROXIMATION; LEAST SQUARES SUPPORT VECTOR MACHINES; NEAREST-NEIGHBORS;

EID: 79960070992     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065711002791     Document Type: Article
Times cited : (7)

References (61)
  • 1
    • 77958043391 scopus 로고    scopus 로고
    • Variable selection in nonlinear modeling based on RBF networks and evolutionary computation
    • P. Patrinos, A. Alexandridis, K. Ninos and H. Sarimveis, Variable selection in nonlinear modeling based on RBF networks and evolutionary computation, International Journal of Neural Systems 20(5) (2010) 365-379.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.5 , pp. 365-379
    • Patrinos, P.1    Alexandridis, A.2    Ninos, K.3    Sarimveis, H.4
  • 2
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • DOI 10.1007/s10994-005-1505-9
    • J. Neumann, C. Schn̈orr and G. Steidl, Combined SVM-based feature selection and classification, Machine Learning 61(1-3) (2005) 129-150. (Pubitemid 43049365)
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 3
    • 34948844661 scopus 로고    scopus 로고
    • A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue
    • DOI 10.1016/j.artmed.2007.07.008, PII S0933365707000978, Integrative data mining in systems biology
    • Z. Chen, J. Li and L. Wei, A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue, Artificial Intelligence in Medicine 41(2) (2007) 161-175. (Pubitemid 47534223)
    • (2007) Artificial Intelligence in Medicine , vol.41 , Issue.2 , pp. 161-175
    • Chen, Z.1    Li, J.2    Wei, L.3
  • 4
    • 73949099341 scopus 로고    scopus 로고
    • Faster training using fusion of activation functions for feed forward neural networks
    • M. Asaduzzaman, M. Shahjahan and K. Murase, Faster training using fusion of activation functions for feed forward neural networks, International Journal of Neural Systems 19(6) (2009) 437-448.
    • (2009) International Journal of Neural Systems , vol.19 , Issue.6 , pp. 437-448
    • Asaduzzaman, M.1    Shahjahan, M.2    Murase, K.3
  • 5
    • 0037486916 scopus 로고    scopus 로고
    • Analyzing tumor gene expression profiles
    • DOI 10.1016/S0933-3657(03)00035-6
    • C. Peterson and M. Ringńer, Analyzing tumor gene expression profiles, Artificial Int. in Medicine 28(1) (2003) 59-74. (Pubitemid 36870751)
    • (2003) Artificial Intelligence in Medicine , vol.28 , Issue.1 , pp. 59-74
    • Peterson, C.1    Ringner, M.2
  • 6
    • 77951554455 scopus 로고    scopus 로고
    • Indirect adaptive control of unknown multi variable nonlinear systems with parametric and dynamic uncertainties using a new neuro-fuzzy system description
    • D. C. Theodoridis, Y. S. Boutalis and M. A. Christodoulou, Indirect adaptive control of unknown multi variable nonlinear systems with parametric and dynamic uncertainties using a new neuro-fuzzy system description, International Journal of Neural Systems 20(2) (2010) 149-158.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.2 , pp. 149-158
    • Theodoridis, D.C.1    Boutalis, Y.S.2    Christodoulou, M.A.3
  • 7
    • 0036565201 scopus 로고    scopus 로고
    • Subsethood-product fuzzy neural inference system (SuPFuNIS)
    • DOI 10.1109/TNN.2002.1000126, PII S1045922702044326
    • S. Paul and S. Kumar, Subsethood-product Fuzzy Neural Inference System (SuPFuNIS), IEEE Trans. on Neural Networks 13(3) (2002) 578-599. (Pubitemid 34669649)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 578-599
    • Paul, S.1    Kumar, S.2
  • 8
    • 38649135772 scopus 로고    scopus 로고
    • A max-piecewise-linear neural network for function approximation
    • DOI 10.1016/j.neucom.2007.03.001, PII S0925231207000823
    • C. Wen and X. Ma, A Max-piecewise-linear neural network for function approximation, Neurocomput-ing 71(4-6) (2008) 843-852. (Pubitemid 351168424)
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 843-852
    • Wen, C.1    Ma, X.2
  • 9
    • 34248523999 scopus 로고    scopus 로고
    • A novel hybrid algorithm for function approximation
    • Z. J. Lee, A Novel Hybrid Algorithm for Function Approximation, Exp. Sys. with Applications 34(1) (2008) 384-390.
    • (2008) Exp. Sys. with Applications , vol.34 , Issue.1 , pp. 384-390
    • Lee, Z.J.1
  • 10
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • DOI 10.1109/TNN.2004.836241
    • G. B. Huang, P. Saratchandran and N. Sundarara-jan, A Generalized Growing and Pruning RBF (GGAP-RBF) neural network for function approximation, IEEE Trans. On Neural Networks 16(1) (2005) 57-67. (Pubitemid 40241910)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 11
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez and A. F. Diaz, Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation, IEEE Trans. on Neural Networks 14(6) (2003) 1478-1495.
    • (2003) IEEE Trans. on Neural Networks , vol.14 , Issue.6 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernandez, F.J.5    Diaz, A.F.6
  • 12
    • 25144447299 scopus 로고    scopus 로고
    • Input and structure selection for κ-NN approximator
    • Computational Intelligence and Bioinspired Systems: 8th International Workshop on Artificial Neural Networks, IWANN 2005. Proceedings
    • A. Sorjamaa, N. Reyhani and A. Lendasse, Input and structure selection for k-NN approximator, Lecture Notes in Computer Science 3512 (2005) 985-992. (Pubitemid 41343074)
    • (2005) Lecture Notes in Computer Science , vol.3512 , pp. 985-992
    • Sorjamaa, A.1    Reyhani, N.2    Lendasse, A.3
  • 13
    • 34548170754 scopus 로고    scopus 로고
    • Methodology for long-term prediction of time series
    • DOI 10.1016/j.neucom.2006.06.015, PII S0925231207001610
    • A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji and A. Lendasse, Methodology for long-term prediction of time series, Neurocomputing 70(16-18) (2007) 2861-2869. (Pubitemid 47308638)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2861-2869
    • Sorjamaa, A.1    Hao, J.2    Reyhani, N.3    Ji, Y.4    Lendasse, A.5
  • 14
    • 0036859376 scopus 로고    scopus 로고
    • Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory
    • DOI 10.1109/TNN.2002.804316
    • O. Castillo and P. Melin, Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic and fractal theory, IEEE Trans. on Neural Networks 13(6) (2002) 1395-1408. (Pubitemid 35428527)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1395-1408
    • Castillo, O.1    Melin, P.2
  • 15
    • 33751417312 scopus 로고    scopus 로고
    • Identification and control of power plant de-superheater using soft computing techniques
    • DOI 10.1016/j.engappai.2006.06.006, PII S0952197606001138
    • A. Ghaffari, A. R. Mehrabian and M. Mohammad-Zaheri, Identification and control of power plant de-superheater using soft computing techniques, Engineering Applications of Artificial Intelligence 20(2) (2007) 273-287. (Pubitemid 44821780)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.2 , pp. 273-287
    • Ghaffari, A.1    Mehrabian, A.R.2    Mohammad-Zaheri, M.3
  • 16
    • 3042549361 scopus 로고    scopus 로고
    • Fuzzy Identification using fuzzy neural networks with stable learning algorithms
    • W. Yu and X. Li, Fuzzy Identification using fuzzy neural networks with stable learning algorithms, IEEE Trans. on Fuzzy Systems 12(3) (2004) 411-420.
    • (2004) IEEE Trans. on Fuzzy Systems , vol.12 , Issue.3 , pp. 411-420
    • Yu, W.1    Li, X.2
  • 17
    • 85164392958 scopus 로고
    • A Study of Cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, Quebec, Canada
    • R. Kohavi, A Study of Cross-validation and bootstrap for accuracy estimation and model selection, in Proc. of the 14th Int. Joint Conference on Artificial Intelligence (Montreal, Quebec, Canada, 1995) Vol. 2, pp. 1137-1145.
    • (1995) Proc. of the 14th Int. Joint Conference on Artificial Intelligence , vol.2 , pp. 1137-1145
    • Kohavi, R.1
  • 19
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The.632+ Bootstrap Method
    • B. Efron and R. Tibshirani, Improvements on cross-validation: The.632+ Bootstrap Method, Journal of the American Stat. Association 92(438) (1997) 548-560.
    • (1997) Journal of the American Stat. Association , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 20
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • C. Nadeau and Y. Bengio, Inference for the generalization error, Machine Learning 52(3) (2003) 239-281.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 21
    • 0033903664 scopus 로고    scopus 로고
    • Unsupervised stratification of cross-validation for accuracy estimation
    • DOI 10.1016/S0004-3702(99)00094-6
    • N. A. Diamantidis, D. Karlis and E. A. Giakoumakis, Unsupervised stratification of cross-validation for accuracy estimation, Artificial Intelligence 116(1-2) (2000) 1-16. (Pubitemid 30560294)
    • (2000) Artificial Intelligence , vol.116 , Issue.1-2 , pp. 1-16
    • Diamantidis, N.A.1    Karlis, D.2    Giakoumakis, E.A.3
  • 22
    • 0036531230 scopus 로고    scopus 로고
    • A tsk-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms
    • C. F. Juang, A tsk-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms, IEEE Trans. on Fuzzy Systems 10(2) (2002) 155-170.
    • (2002) IEEE Trans. on Fuzzy Systems , vol.10 , Issue.2 , pp. 155-170
    • Juang, C.F.1
  • 24
    • 0035480411 scopus 로고    scopus 로고
    • Bootstrap re-sampling for unbalanced data in supervised learning
    • DOI 10.1016/S0377-2217(00)00244-7, PII S0377221700002447
    • G. Dupret and M. Koda, Bootstrap re-sampling for unbalanced data in supervised learning, European Journal of Operational Research 134 (2001) 141-156. (Pubitemid 32639096)
    • (2001) European Journal of Operational Research , vol.134 , Issue.1 , pp. 141-156
    • Dupret, G.1    Koda, M.2
  • 26
    • 32544437144 scopus 로고    scopus 로고
    • Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series
    • DOI 10.1623/hysj.51.1.21
    • A. W. Jayawardena, P. C. Xu, F. L. Tsang and W. K. Li, Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series, Hydrological Sci. Journal 51(1) (2006) 21-44. (Pubitemid 43231065)
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.1 , pp. 21-44
    • Jayawardena, A.W.1    Xu, P.C.2    Tsang, F.L.3    Li, W.K.4
  • 31
    • 21144438694 scopus 로고    scopus 로고
    • Model selection with cross-validations and bootstraps-application to time series prediction RBFN models
    • A. Lendasse, V. Wertz and M. Verleysen, Model selection with cross-validations and bootstraps-application to time series prediction RBFN models, Lect. Notes in Computer Science 2714 (2003) 573-580.
    • (2003) Lect. Notes in Computer Science , vol.2714 , pp. 573-580
    • Lendasse, A.1    Wertz, V.2    Verleysen, M.3
  • 32
    • 34249013692 scopus 로고    scopus 로고
    • Predicting service request in support centers based on nonlinear dynamics, ARMA modeling and neural networks
    • DOI 10.1016/j.eswa.2006.10.003, PII S0957417406003174
    • E. Balaguer, A. Palomares, E. Soria and J. D. Mart́in-Guerrero, Predicting service request in support centres based on nonlinear dynamics, ARMA modeling and neural networks, Expert Systems with Applications 34(1) (2008) 665-672. (Pubitemid 46778983)
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 665-672
    • Balaguer, E.1    Palomares, A.2    Soria, E.3    Martin-Guerrero, J.D.4
  • 33
    • 67650091947 scopus 로고    scopus 로고
    • Nonlinear system identification based on internal recurrent neural networks
    • G. Puscasu and B. Codres, Nonlinear system identification based on internal recurrent neural networks, International Journal of Neural Systems 19(2) (2009) 115-125.
    • (2009) International Journal of Neural Systems , vol.19 , Issue.2 , pp. 115-125
    • Puscasu, G.1    Codres, B.2
  • 35
    • 0028399792 scopus 로고
    • Memory neuron networks for identification and control of dynamic systems
    • P. Sastry, G. Santharam and K. Innikrishnan, Memory neuron networks for identification and control of dynamic systems, IEEE Trans. on Neural Networks 5(2) (1994) 306-319.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.2 , pp. 306-319
    • Sastry, P.1    Santharam, G.2    Innikrishnan, K.3
  • 36
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, Finding structure in time, Cognitive Science, 14 (1990) 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 38
    • 77951553244 scopus 로고    scopus 로고
    • Prediction of Parki-son's disease tremor onset using radial basis function neural network based on particle swarm optimization
    • D. Wu, K. Warwick, Z. Ma, M. N. Gasson, J. G. Burgess, S. Pan and T. Z. Aziz, Prediction of Parki-son's disease tremor onset using radial basis function neural network based on particle swarm optimization, International Journal of Neural Systems 20(2) (2010) 109-116.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.2 , pp. 109-116
    • Wu, D.1    Warwick, K.2    Ma, Z.3    Gasson, M.N.4    Burgess, J.G.5    Pan, S.6    Aziz, T.Z.7
  • 39
    • 55349103950 scopus 로고    scopus 로고
    • EPNet for chaotic time-series prediction
    • Simulated Evolution and Learning
    • X. Yao and Y. Liu, EPNet for chaotic time-series prediction, Lecture Notes in Computer Science 1285 (1996) 146-156. (Pubitemid 127112746)
    • (1997) Lecture Notes in Computer Science , Issue.1285 , pp. 146-156
    • Yao, X.1    Liu, Y.2
  • 40
    • 21244438033 scopus 로고    scopus 로고
    • Time-series forecasting using flexible neural tree model
    • DOI 10.1016/j.ins.2004.10.005, PII S0020025504002944
    • Y. H. Chen, B. Yang, J. Dong and A. Abraham, Time-series forecasting using flexible neural tree model, Information Sciences 174(3-4) (2005) 219-235. (Pubitemid 40893971)
    • (2005) Information Sciences , vol.174 , Issue.3-4 , pp. 219-235
    • Chen, Y.1    Yang, B.2    Dong, J.3    Abraham, A.4
  • 41
    • 0000930268 scopus 로고
    • Hierarchical grouping methods and stopping rules: An evaluation
    • R. Mojena, Hierarchical grouping methods and stopping rules: An evaluation, The Computer Journal 20(4) (1977) 359-363.
    • (1977) The Computer Journal , vol.20 , Issue.4 , pp. 359-363
    • Mojena, R.1
  • 42
    • 0002591468 scopus 로고
    • A two-dimensional mapping with a strange attractor
    • M. H́enon, A two-dimensional mapping with a strange attractor, Comm. in Mathematical Physics 50(1) (1976) 69-77.
    • (1976) Comm. in Mathematical Physics , vol.50 , Issue.1 , pp. 69-77
    • H́enon, M.1
  • 43
    • 0017185443 scopus 로고
    • Simple mathematical models with very complicated dynamics
    • R. M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976) 459-467.
    • (1976) Nature , vol.261 , pp. 459-467
    • May, R.M.1
  • 44
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control-systems
    • M. C. Mackey and L. Glass, Oscillation and chaos in physiological control-systems, Science 197(4300) (1977) 287-289.
    • (1977) Science , vol.197 , Issue.4300 , pp. 287-289
    • MacKey, M.C.1    Glass, L.2
  • 45
    • 0642292822 scopus 로고
    • Fractals and time series analysis
    • R. J. Korsan, Fractals and time series analysis, Math-ematica 3 (1993) 39-47.
    • (1993) Mathematica , vol.3 , pp. 39-47
    • Korsan, R.J.1
  • 46
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • PII S1045922796043986
    • V. Cherkassky, Comparison of adaptive methods for function estimation from samples, IEEE Trans. on Neural Networks 7(4) (1996) 969-984. (Pubitemid 126776368)
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mulier, F.3
  • 47
    • 79960036339 scopus 로고    scopus 로고
    • PhD dissertation, Dept. of Computer Architecture and Computer Technology, Univ. of Granada, Spain
    • H. Pomares, New methodologies for fuzzy systems design, PhD dissertation, Dept. of Computer Architecture and Computer Technology, Univ. of Granada, Spain, (2000).
    • (2000) New Methodologies for Fuzzy Systems Design
    • Pomares, H.1
  • 48
    • 0025399567 scopus 로고    scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K. S. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. on Neural Networks 1(1) (2006) 4-27.
    • (2006) IEEE Trans. on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 49
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • DOI 10.1016/S0893-6080(03)00169-2
    • V. Cherkassky and Y. Q. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks 17(1) (2004) 113-126. (Pubitemid 38019003)
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 51
    • 0001520365 scopus 로고    scopus 로고
    • Analysis of the operators involved in the definition of the implication functions and in the fuzzy inference process
    • PII S0888613X98100166
    • I. Rojas, O. Valenzuela, M. Anguita and A. Prieto, Analysis of the operators involved in the definition of the implication functions and in the fuzzy inference process, International Journal of Approximate Reasoning 19(3) (1998) 367-389. (Pubitemid 128426487)
    • (1998) International Journal of Approximate Reasoning , vol.19 , Issue.3-4 , pp. 367-389
    • Rojas, I.1    Valenzuela, O.2    Anguita, M.3    Prieto, A.4
  • 53
    • 24144465448 scopus 로고    scopus 로고
    • Reactive Tabu search for distribution load transfer operation, in Proc
    • Singapore
    • Y. Fukuyama, Reactive Tabu search for distribution load transfer operation, in Proc. IEEE Power Engineering Society Winter Meeting (Singapore, 2000).
    • (2000) IEEE Power Engineering Society Winter Meeting
    • Fukuyama, Y.1
  • 54
    • 0042380208 scopus 로고    scopus 로고
    • Protein folding simulations of the hydrophobic-hydrophilic model by combining Tabu search with genetic algorithms
    • T. Jiang, Q. Cui, G. Shi and S. Ma, Protein folding simulations of the hydrophobic-hydrophilic model by combining Tabu search with genetic algorithms, Journal of Chemical Physics 119(8) (2003) 4592-4596.
    • (2003) Journal of Chemical Physics , vol.119 , Issue.8 , pp. 4592-4596
    • Jiang, T.1    Cui, Q.2    Shi, G.3    Ma, S.4
  • 58
    • 0031560475 scopus 로고    scopus 로고
    • Measuring the stability of histogram appearance when the anchor position is changed
    • J. S. Simonoff and F.Udina, Measuring the stability of histogram appearance when the anchor position is changed, Comp. Statistics & Data Analysis 23(3) (1997) 335-353.
    • (1997) Comp. Statistics & Data Analysis , vol.23 , Issue.3 , pp. 335-353
    • Simonoff, J.S.1    Udina, F.2
  • 59
    • 77949570218 scopus 로고    scopus 로고
    • A path sampling identity for computing the Kullback-Leibler and J divergences
    • G. Lefebvre, R. Stede and A. C. Vandal, A path sampling identity for computing the Kullback-Leibler and J divergences, Computational Statistics and Data Analysis 54 (2010) 1719-1731.
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 1719-1731
    • Lefebvre, G.1    Stede, R.2    Vandal, A.C.3
  • 61
    • 79960035867 scopus 로고    scopus 로고
    • The MathWorks Inc.
    • MATLAB version 7.11.0: The MathWorks Inc., 2010.
    • (2010) MATLAB Version 7.11.0


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.