메뉴 건너뛰기




Volumn 23, Issue 10, 2009, Pages 530-537

A nonlinear partial least squares algorithm using quadratic fuzzy inference system

Author keywords

Fuzzy inference system; Multivariate statistical analysis; Partial least squares; Regression analysis

Indexed keywords

FUZZY INFERENCE; FUZZY SYSTEMS; LEAST SQUARES APPROXIMATIONS; MEAN SQUARE ERROR; MULTIVARIANT ANALYSIS;

EID: 70350364494     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1249     Document Type: Article
Times cited : (31)

References (33)
  • 1
    • 0242330151 scopus 로고    scopus 로고
    • Orthogonal nonlinear partial least-squares regression
    • Doymaz F, Palazoglu A, Romagnoli J. Orthogonal nonlinear partial least-squares regression. Ind. Eng. Chem. Res. 2003; 42: 5836-5849.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 5836-5849
    • Doymaz, F.1    Palazoglu, A.2    Romagnoli, J.3
  • 3
    • 33751348321 scopus 로고    scopus 로고
    • Batch to batch optimal control of batch processes based on recursively updated nonlinear partial least squares models
    • Li C, Zhang J, Wang G. Batch to batch optimal control of batch processes based on recursively updated nonlinear partial least squares models. Chem. Eng. Comm. 2007; 194: 261-279.
    • (2007) Chem. Eng. Comm. , vol.194 , pp. 261-279
    • Li, C.1    Zhang, J.2    Wang, G.3
  • 5
    • 0000050514 scopus 로고    scopus 로고
    • INLR: Implicit non-linear latent variable regression
    • Berglund A, Wold S. INLR: implicit non-linear latent variable regression. J. Chemometrics 1997; 11: 141-156.
    • (1997) J. Chemometrics , vol.11 , pp. 141-156
    • Berglund, A.1    Wold, S.2
  • 7
    • 0033611717 scopus 로고    scopus 로고
    • Nonlinear projection to latent structures revisited: The quadratic PLS algorithm
    • Baffi G, Martin E, Morris A. Nonlinear projection to latent structures revisited: the quadratic PLS algorithm. Comput. Chem. Eng. 1999; 23: 395-411.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 395-411
    • Baffi, G.1    Martin, E.2    Morris, A.3
  • 8
    • 0036685768 scopus 로고    scopus 로고
    • Nonlinear partial least square: Estimation of the weight vector
    • Hassel PA, Martin EB, Morris J. Nonlinear partial least square: estimation of the weight vector. J. Chemometerics 2002; 16: 419-426.
    • (2002) J. Chemometerics , vol.16 , pp. 419-426
    • Hassel, P.A.1    Martin, E.B.2    Morris, J.3
  • 9
    • 0036638612 scopus 로고    scopus 로고
    • Iterative error-based nonlinear PLS method for nonlinear chemical process modeling
    • Min KG, Han I-S, Han C. Iterative error-based nonlinear PLS method for nonlinear chemical process modeling. J. Chem. Eng. Japan 2002; 35(7): 613-625.
    • (2002) J. Chem. Eng. Japan , vol.35 , Issue.7 , pp. 613-625
    • Min, K.G.1    Han, I.-S.2    Han, C.3
  • 13
    • 0025316163 scopus 로고
    • A nonlinear PLS model
    • Frank IE. A nonlinear PLS model. Chem. Int. Lab. Sys. 1990; 8: 109-119.
    • (1990) Chem. Int. Lab. Sys. , vol.8 , pp. 109-119
    • Frank, I.E.1
  • 14
    • 0026578543 scopus 로고
    • Nonlinear partial least squares modeling: II Spline inner relation
    • Wold S. Nonlinear partial least squares modeling: II Spline inner relation. Chem. Int. Lab. Sys. 1992; 14: 71-84.
    • (1992) Chem. Int. Lab. Sys. , vol.14 , pp. 71-84
    • Wold, S.1
  • 15
    • 0031323122 scopus 로고    scopus 로고
    • Additive splines for partial least squares regression
    • Durand JF, Sabatier R. Additive splines for partial least squares regression. J. Am. Stat. Assoc., 1997; 92: 1546-1554.
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 1546-1554
    • Durand, J.F.1    Sabatier, R.2
  • 16
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin SJ, McAvoy TJ. Nonlinear PLS modeling using neural networks. Comput. Chem. Eng. 1992; 16(4): 379-391.
    • (1992) Comput. Chem. Eng. , vol.16 , Issue.4 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 19
    • 33746777157 scopus 로고    scopus 로고
    • Nonlinear dynamic partial least squares modeling of a full scale biological wastewater treatment
    • Lee D, Lee M, Woo S, Kim Y, Park J. Nonlinear dynamic partial least squares modeling of a full scale biological wastewater treatment plant. Process Biochemistry 2006; 41: 2050-2057.
    • (2006) Plant. Process Biochemistry , vol.41 , pp. 2050-2057
    • Lee, D.1    Lee, M.2    Woo, S.3    Kim, Y.4    Park, J.5
  • 20
    • 33846344646 scopus 로고    scopus 로고
    • Artificial neural network-based transformation for nonlinear partial least squares regression with application to QSAR studies
    • Zhou Y, Jiang J, Lin W, Xu L, Yu R. Artificial neural network-based transformation for nonlinear partial least squares regression with application to QSAR studies. Talanta 2007; 185: 848-853.
    • (2007) Talanta , vol.185 , pp. 848-853
    • Zhou, Y.1    Jiang, J.2    Lin, W.3    Xu, L.4    Yu, R.5
  • 21
    • 13444262016 scopus 로고    scopus 로고
    • Application of fuzzy partial least squares (FPLS) modeling nonlinear biological processes
    • Yoo C, Bang Y, Lee I, Rosen C. Application of fuzzy partial least squares (FPLS) modeling nonlinear biological processes. Korean J. Chem. Eng. 2004; 21(6): 1087-1097.
    • (2004) Korean J. Chem. Eng. , vol.21 , Issue.6 , pp. 1087-1097
    • Yoo, C.1    Bang, Y.2    Lee, I.3    Rosen, C.4
  • 22
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M, Kang G. Structure identification of fuzzy model. Fuzzy Set. Sys. 1988; 28: 15-33.
    • (1988) Fuzzy Set. Sys. , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.2
  • 23
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. SMC 1985; 15(1): 116-132.
    • (1985) IEEE Trans. SMC , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 24
    • 0037191667 scopus 로고    scopus 로고
    • Nonlinear PLS modeling with fuzzy inference system
    • Bang YH, Yoo CK, Lee I. Nonlinear PLS modeling with fuzzy inference system. Chem. Int. Lab. Sys. 2003; 64(2): 137-155.
    • (2003) Chem. Int. Lab. Sys , vol.64 , Issue.2 , pp. 137-155
    • Bang, Y.H.1    Yoo, C.K.2    Lee, I.3
  • 25
    • 18844397336 scopus 로고    scopus 로고
    • Application of latent variable methods to process control and multivariate statistical process control in industry
    • Kourti T. Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J. Adapt. Control Signal Process. 2005; 19: 213-246.
    • (2005) Int. J. Adapt. Control Signal Process , vol.19 , pp. 213-246
    • Kourti, T.1
  • 26
    • 18844362190 scopus 로고    scopus 로고
    • TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy
    • Herrera L, Pomares H, Rojas I, Valenzuela O, Prieto A. TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy. Fuzzy Set. Sys. 2005; 153: 403-427.
    • (2005) Fuzzy Set. Sys. , vol.153 , pp. 403-427
    • Herrera, L.1    Pomares, H.2    Rojas, I.3    Valenzuela, O.4    Prieto, A.5
  • 28
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J, Darken C. Fast learning in networks of locally-tuned processing units. J. Neural Comp. 1989; 1: 281-294.
    • (1989) J. Neural Comp , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 29
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK Fuzzy models by combining global learning and local learning
    • Yen J, Wang L, Gillespie CW. Improving the interpretability of TSK Fuzzy models by combining global learning and local learning. IEE Trans. Sys. 1998; 6: 530-537.
    • (1998) IEE Trans. Sys. , vol.6 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3
  • 30
    • 11144325691 scopus 로고
    • Partial least squares regression: A tutorial
    • Geladi P, Kowalski BR. Partial least squares regression: a tutorial. Anal. Chimica Acta 1986; 185: 1-17.
    • (1986) Anal. Chimica Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 31
    • 0037085129 scopus 로고    scopus 로고
    • Manufacturing startup problem solved by mixed integer quadratic programming and multivariate statistical modeling
    • Xu D, Albin S. Manufacturing startup problem solved by mixed integer quadratic programming and multivariate statistical modeling. Int. J. Prod. Res. 2002; 40(3): 625-640.
    • (2002) Int. J. Prod. Res. , vol.40 , Issue.3 , pp. 625-640
    • Xu, D.1    Albin, S.2
  • 32
    • 24044461725 scopus 로고    scopus 로고
    • A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
    • Kim K, Lee J, Lee I. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemomet. Intel. Lab. Sys. 2005; 79: 22-30.
    • (2005) Chemomet. Intel. Lab. Sys. , vol.79 , pp. 22-30
    • Kim, K.1    Lee, J.2    Lee, I.3
  • 33
    • 67650252865 scopus 로고    scopus 로고
    • SPSS., 17.0, SPSS, Inc
    • SPSS. SPSS Statistics 17.0, SPSS, Inc.
    • SPSS Statistics


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.