메뉴 건너뛰기




Volumn , Issue , 2012, Pages 447-458

Recent developments in clustering algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 84883240273     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (102)
  • 2
    • 67649643458 scopus 로고    scopus 로고
    • A framework for clustering massive-domain data streams
    • C. C. Aggarwal. A framework for clustering massive-domain data streams. In ICDE, pages 102-113, 2009.
    • (2009) ICDE , pp. 102-113
    • Aggarwal, C.C.1
  • 3
    • 78650239815 scopus 로고    scopus 로고
    • Local matrix adaptation in topographic neural maps
    • B. Arnonkijpanich, A. Hasenfuss, and B. Hammer. Local matrix adaptation in topographic neural maps. Neurocomputing, 74(4):522-539, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.4 , pp. 522-539
    • Arnonkijpanich, B.1    Hasenfuss, A.2    Hammer, B.3
  • 5
    • 0036036832 scopus 로고    scopus 로고
    • Approximate clustering via core-sets
    • M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In STOC, pages 250-257, 2002.
    • (2002) STOC , pp. 250-257
    • Badoiu, M.1    Har-Peled, S.2    Indyk, P.3
  • 6
    • 9444254174 scopus 로고    scopus 로고
    • A framework for statistical clustering with a constant time approximation algorithms for k-median clustering
    • Springer
    • S. Ben-david. A framework for statistical clustering with a constant time approximation algorithms for k-median clustering. In In COLT, pages 415-426. Springer, 2004.
    • (2004) In COLT , pp. 415-426
    • Ben-David, S.1
  • 8
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • J. Bezdek. Cluster validity with fuzzy sets. Journal of Cybernetics, 3:58-73, 1974.
    • (1974) Journal of Cybernetics , vol.3 , pp. 58-73
    • Bezdek, J.1
  • 10
    • 0000521616 scopus 로고    scopus 로고
    • Superparamagnetic clustering of data
    • M. Blatt, S. Wiseman, and E. Domany. Superparamagnetic clustering of data. Phys Rev Lett, 76(18):3251-3254, 1996.
    • (1996) Phys Rev Lett , vol.76 , Issue.18 , pp. 3251-3254
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 11
    • 79957576314 scopus 로고    scopus 로고
    • Disjoint unions of complete graphs characterized by their laplacian spectrum
    • R. Boulet. Disjoint unions of complete graphs characterized by their laplacian spectrum. The Electronic journal of Linear Algebra, 18:773-783, 2009.
    • (2009) The Electronic Journal of Linear Algebra , vol.18 , pp. 773-783
    • Boulet, R.1
  • 12
    • 40849145323 scopus 로고    scopus 로고
    • Batch kernel som and related laplacian methods for social network analysis
    • R. Boulet, B. Jouve, F. Rossi, and N. Villa. Batch kernel som and related laplacian methods for social network analysis. Neurocomputing, 71(7-9):1257-1273, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1257-1273
    • Boulet, R.1    Jouve, B.2    Rossi, F.3    Villa, N.4
  • 14
    • 81355160163 scopus 로고    scopus 로고
    • Model-based clustering of time series in group-specific functional subspaces
    • C. Bouveyron and J. Jacques. Model-based clustering of time series in group-specific functional subspaces. Advances in Data Analysis and Classification, 5(4):281-300, 2011.
    • (2011) Advances in Data Analysis and Classification , vol.5 , Issue.4 , pp. 281-300
    • Bouveyron, C.1    Jacques, J.2
  • 16
    • 77951952667 scopus 로고    scopus 로고
    • Characterization, stability and convergence of hierarchical clustering methods
    • August
    • G. Carlsson and F. Mémoli. Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn. Res., 11:1425-1470, August 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1425-1470
    • Carlsson, G.1    Mémoli, F.2
  • 17
    • 84947783257 scopus 로고    scopus 로고
    • Dissimilarity clustering by hierarchical multi-level refinement
    • B. Conan-Guez and F. Rossi. Dissimilarity clustering by hierarchical multi-level refinement. In ESANN’12, 2012.
    • (2012) ESANN’12
    • Conan-Guez, B.1    Rossi, F.2
  • 20
    • 77649330804 scopus 로고    scopus 로고
    • Defining pobability density for a distribution of random functions
    • A. Delaigle and P. Hall. Defining pobability density for a distribution of random functions. The Annals of Statistics, 38:1171-1193, 2010.
    • (2010) The Annals of Statistics , vol.38 , pp. 1171-1193
    • Delaigle, A.1    Hall, P.2
  • 23
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • J. Dunn. Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4(1):1974, 95-104.
    • (1974) Journal of Cybernetics , vol.4 , Issue.1 , pp. 95-104
    • Dunn, J.1
  • 24
    • 84947773160 scopus 로고    scopus 로고
    • A discussion on parallelization schemes for stochastic vector quantization algorithms
    • M. Durut, B. Patra, and F. Rossi. A discussion on parallelization schemes for stochastic vector quantization algorithms. In ESANN’12, 2012.
    • (2012) ESANN’12
    • Durut, M.1    Patra, B.2    Rossi, F.3
  • 25
    • 84875818260 scopus 로고    scopus 로고
    • Modularity-based clustering for network-constrained trajectories
    • M. K. el Mahrsi and F. Rossi. Modularity-based clustering for network-constrained trajectories. In ESANN’12, 2012.
    • (2012) ESANN’12
    • El Mahrsi, M.K.1    Rossi, F.2
  • 26
    • 85162319688 scopus 로고    scopus 로고
    • Sparse manifold clustering and embedding
    • J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Weinberger, editors
    • E. Elhamifar and R. Vidal. Sparse manifold clustering and embedding. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 55-63. 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 55-63
    • Elhamifar, E.1    Vidal, R.2
  • 27
    • 33845913997 scopus 로고    scopus 로고
    • Nonparametric functional data analysis
    • Springer, New York
    • F. Ferraty and P. Vieu. Nonparametric functional data analysis. Springer Series in Statistics. Springer, New York, 2006.
    • (2006) Springer Series in Statistics
    • Ferraty, F.1    Vieu, P.2
  • 30
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis and density estimation
    • C. Fraley and A. Raftery. Model-based clustering, discriminant analysis and density estimation. J. Amer. Statist. Assoc., 97:611-631, 2002.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.2
  • 31
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972-976, 2007.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 34
    • 77649237600 scopus 로고    scopus 로고
    • Median fuzzy c-means for clustering dissimilarity data
    • T. Geweniger, D. Zühlke, B. Hammer, and T. Villmann. Median fuzzy c-means for clustering dissimilarity data. Neurocomputing, 73(7-9):1109-1116, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1109-1116
    • Geweniger, T.1    Zühlke, D.2    Hammer, B.3    Villmann, T.4
  • 35
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • M. Girolami. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural Networks, 13(3):780-784, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 41
    • 78149341007 scopus 로고    scopus 로고
    • Topographic mapping of large dissimilarity datasets
    • B. Hammer and A. Hasenfuss. Topographic mapping of large dissimilarity datasets. Neural Computation, 22(9):2229-2284, 2010.
    • (2010) Neural Computation , vol.22 , Issue.9 , pp. 2229-2284
    • Hammer, B.1    Hasenfuss, A.2
  • 42
    • 1542786232 scopus 로고    scopus 로고
    • A general framework for unsupervised processing of structured data
    • B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. A general framework for unsupervised processing of structured data. Neurocomputing, 57:3-35, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 3-35
    • Hammer, B.1    Micheli, A.2    Sperduti, A.3    Strickert, M.4
  • 44
    • 0028667335 scopus 로고
    • Nerf c-means: Non-euclidean relational fuzzy clustering
    • R. Hathaway and J. Bezdek. Nerf c-means: Non-euclidean relational fuzzy clustering. Pattern Recognition, 27(3):429-437, 1994.
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 429-437
    • Hathaway, R.1    Bezdek, J.2
  • 47
    • 0032595161 scopus 로고    scopus 로고
    • A fuzzy k-modes algorithm for clustering categorical data
    • Z. Huang and M. Ng. A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4):446-452, 1999.
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.4 , pp. 446-452
    • Huang, Z.1    Ng, M.2
  • 48
    • 84947742596 scopus 로고    scopus 로고
    • Curves clustering with approximation of the density of functional random variables
    • J. Jacques and C. Preda. Curves clustering with approximation of the density of functional random variables. In ESANN, 2012.
    • (2012) ESANN
    • Jacques, J.1    Preda, C.2
  • 49
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8):651-666, 2010.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 50
    • 0043245795 scopus 로고    scopus 로고
    • Clustering for sparsely sampled functional data
    • G. James and C. Sugar. Clustering for sparsely sampled functional data. J. Amer. Statist. Assoc., 98(462):397-408, 2003.
    • (2003) J. Amer. Statist. Assoc. , vol.98 , Issue.462 , pp. 397-408
    • James, G.1    Sugar, C.2
  • 52
    • 23844528211 scopus 로고    scopus 로고
    • Cluster center initialization algorithm for k-means clustering
    • S. Khan and A. Ahmad. Cluster center initialization algorithm for k-means clustering. Pattern Recognition Letters, 25(11):1293-1302, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.11 , pp. 1293-1302
    • Khan, S.1    Ahmad, A.2
  • 53
    • 4544263146 scopus 로고    scopus 로고
    • On cluster validity index for estimation of the optimal number of fuzzy clusters
    • D.-W. Kim, K. Lee, and D. Lee. On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition, 37(10):2009-2025, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.10 , pp. 2009-2025
    • Kim, D.-W.1    Lee, K.2    Lee, D.3
  • 54
    • 85156277066 scopus 로고    scopus 로고
    • An impossibility theorem for clustering
    • J. M. Kleinberg. An impossibility theorem for clustering. In NIPS, pages 446-453, 2002.
    • (2002) NIPS , pp. 446-453
    • Kleinberg, J.M.1
  • 55
    • 0003410791 scopus 로고    scopus 로고
    • editors, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition
    • T. Kohonen, M. R. Schroeder, and T. S. Huang, editors. Self-Organizing Maps. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001.
    • (2001) Self-Organizing Maps.
    • Kohonen, T.1    Schroeder, M.R.2    Huang, T.S.3
  • 58
    • 0032178397 scopus 로고    scopus 로고
    • Cluster validity index for fuzzy clustering
    • S. Kwon. Cluster validity index for fuzzy clustering. Electronics Letters, 34(22):2176-2177, 1998.
    • (1998) Electronics Letters , vol.34 , Issue.22 , pp. 2176-2177
    • Kwon, S.1
  • 60
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • A. Likas, N. Vlassis, and J. J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36(2):451-461, 2002.
    • (2002) Pattern Recognition , vol.36 , Issue.2 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    Verbeek, J.J.3
  • 61
    • 77956497723 scopus 로고    scopus 로고
    • J. Fürnkranz and T. Joachims, editors, ICML, Omnipress
    • F. Lin and W. W. Cohen. Power iteration clustering. In J. Fürnkranz and T. Joachims, editors, ICML, pages 655-662. Omnipress, 2010.
    • (2010) Power Iteration Clustering , pp. 655-662
    • Lin, F.1    Cohen, W.W.2
  • 62
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491-502, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 63
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. V. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.V.1
  • 66
    • 0027632248 scopus 로고
    • ’neural-gas’ network for vector quantization and its application to time-series prediction
    • T. M. Martinetz, S. G. Berkovich, and K. J. Schulten.’neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 67
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for Clustering with Gaussian Mixture Models
    • C. Maugis, G. Celeux, and M.-L. Martin-Magniette. Variable selection for Clustering with Gaussian Mixture Models. Biometrics, 65(3):701-709, 2009.
    • (2009) Biometrics , vol.65 , Issue.3 , pp. 701-709
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.-L.3
  • 68
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering technique. Pattern Recognition, 33(9):1455-1465, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 72
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • P. McNicholas and B. Murphy. Parsimonious Gaussian mixture models. Statistics and Computing, 18(3):285-296, 2008.
    • (2008) Statistics and Computing , vol.18 , Issue.3 , pp. 285-296
    • McNicholas, P.1    Murphy, B.2
  • 74
    • 0036709106 scopus 로고    scopus 로고
    • Clarans: A method for clustering objects for spatial data mining
    • R. Ng and J. Han. Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003-1016, 2002.
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.1    Han, J.2
  • 75
  • 77
    • 34249029861 scopus 로고    scopus 로고
    • Penalized model-based clustering with application to variable selection
    • W. Pan and X. Shen. Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research, 8:1145-1164, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1145-1164
    • Pan, W.1    Shen, X.2
  • 79
    • 0004130505 scopus 로고    scopus 로고
    • Springer Series in Statistics. Springer, New York, second edition
    • J. O. Ramsay and B. W. Silverman. Functional data analysis. Springer Series in Statistics. Springer, New York, second edition, 2005.
    • (2005) Functional Data Analysis
    • Ramsay, J.O.1    Silverman, B.W.2
  • 80
    • 0025585402 scopus 로고
    • A deterministic annealing approach to clustering
    • K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to clustering. Pattern Recognition Letters, 11(9):589-594, 1990.
    • (1990) Pattern Recognition Letters , vol.11 , Issue.9 , pp. 589-594
    • Rose, K.1    Gurewitz, E.2    Fox, G.3
  • 81
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • D. Rubin and D. Thayer. EM algorithms for ML factor analysis. Psychometrika, 47(1):69-76, 1982.
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 82
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm gdbscan and its applications
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery, 2:169-194, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 83
    • 0021202650 scopus 로고
    • K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
    • S. Z. Selim and M. Ismail. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(1):81-87, 1984.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.1 , pp. 81-87
    • Selim, S.Z.1    Ismail, M.2
  • 84
    • 85162439676 scopus 로고    scopus 로고
    • Fast and accurate k-means for large datasets
    • J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors
    • M. Shindler, A. Wong, and A. W. Meyerson. Fast and accurate k-means for large datasets. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2375-2383. 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 2375-2383
    • Shindler, M.1    Wong, A.2    Meyerson, A.W.3
  • 85
    • 0037560972 scopus 로고    scopus 로고
    • Clustering functional data
    • T. Tarpey and K. Kinateder. Clustering functional data. J. Classification, 20(1):93-114, 2003.
    • (2003) J. Classification , vol.20 , Issue.1 , pp. 93-114
    • Tarpey, T.1    Kinateder, K.2
  • 86
    • 79960700172 scopus 로고    scopus 로고
    • A validity index for prototype-based clustering of data sets with complex cluster structures
    • K. Tasdemir and E. Merényi. A validity index for prototype-based clustering of data sets with complex cluster structures. IEEE Transactions on Systems, Man, and Cybernetics, 41(4):1039--1053, 2011.
    • (2011) IEEE Transactions on Systems, Man, and Cybernetics , vol.41 , Issue.4
    • Tasdemir, K.1    Merényi, E.2
  • 87
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of Probabilistic Principal Component Analysers
    • E. Tipping and C. Bishop. Mixtures of Probabilistic Principal Component Analysers. Neural Computation, 11(2):443-482, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, E.1    Bishop, C.2
  • 89
    • 79954632157 scopus 로고    scopus 로고
    • K-means requires exponentially many iterations even in the plane
    • A. Vattani. k-means requires exponentially many iterations even in the plane. Discrete and Computational Geometry, 45(4):596-616, 2011.
    • (2011) Discrete and Computational Geometry , vol.45 , Issue.4 , pp. 596-616
    • Vattani, A.1
  • 91
    • 34547300830 scopus 로고    scopus 로고
    • Technical Report 149, Max Planck Institute for Biological Cybernetics, Aug
    • U. von Luxburg. A tutorial on spectral clustering. Technical Report 149, Max Planck Institute for Biological Cybernetics, Aug. 2006.
    • (2006) A Tutorial on Spectral Clustering
    • Von Luxburg, U.1
  • 93
    • 84898975239 scopus 로고    scopus 로고
    • Limits of spectral clustering
    • L. K. Saul, Y. Weiss, and L. Bottou, editors, MIT Press, Cambridge, MA
    • U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 857-864. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 857-864
    • Von Luxburg, U.1    Bousquet, O.2    Belkin, M.3
  • 94
    • 0003241883 scopus 로고
    • Spline models for observational data
    • Philadelphia
    • G. Wahba. Spline models for observational data. SIAM, Philadelphia, 1990.
    • (1990) SIAM
    • Wahba, G.1
  • 95
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-a survey
    • T. Warren Liao. Clustering of time series data-a survey. Pattern Recognition, 38:1857-1874, 2005.
    • (2005) Pattern Recognition , vol.38 , pp. 1857-1874
    • Warren Liao, T.1
  • 99
    • 33746596561 scopus 로고    scopus 로고
    • On the equivalence between kernel self-organising maps and self-organising mixture density networks
    • H. Yin. On the equivalence between kernel self-organising maps and self-organising mixture density networks. Neural Networks, 19(6-7):780-784, 2006.
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 780-784
    • Yin, H.1
  • 100
    • 78649332539 scopus 로고    scopus 로고
    • Validity index for clusters of different sizes and densities
    • K. Zalik. Validity index for clusters of different sizes and densities. Pattern Recognition Letters, 32:221-2234, 2011.
    • (2011) Pattern Recognition Letters , vol.32 , pp. 221-2234
    • Zalik, K.1
  • 101
    • 2142687208 scopus 로고    scopus 로고
    • A unified framework for model-based clustering
    • S. Zhong and J. Ghosh. A unified framework for model-based clustering. JMLR, 4:1001-1037, 2003.
    • (2003) JMLR , vol.4 , pp. 1001-1037
    • Zhong, S.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.