-
1
-
-
8844241460
-
Class discovery and classification of tumor samples using mixture modeling of gene expression data
-
R. Alexandridis, S. Lin, and M. Irwin. Class discovery and classification of tumor samples using mixture modeling of gene expression data. Bioinformatics, 20:2546-2552, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2546-2552
-
-
Alexandridis, R.1
Lin, S.2
Irwin, M.3
-
2
-
-
33745156863
-
Some theory for Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations
-
P. J. Bickel, and E. Levina. Some theory for Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations. Bernoulli, 10:989-1010, 2004.
-
(2004)
Bernoulli
, vol.10
, pp. 989-1010
-
-
Bickel, P.J.1
Levina, E.2
-
3
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning 45:5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data using support vector machines
-
M. P. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, and D. Haussle. Knowledge-based analysis of microarray gene expression data using support vector machines. Proc Natl Acad Sci USA, 97:262-267, 2000.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 262-267
-
-
Brown, M.P.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
Ares, M.7
Haussle, D.8
-
5
-
-
0020998698
-
On using principal components before separating a mixture of two multivariate normal distributions
-
W. C. Chang. On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32:267-275, 1983.
-
(1983)
Applied Statistics
, vol.32
, pp. 267-275
-
-
Chang, W.C.1
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm (with discussion). JRSS-B, 39:1-38, 1977.
-
(1977)
JRSS-B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
8
-
-
4944239996
-
The estimation of prediction error: Covariance penalties and cross-validation
-
B. Efron. The estimation of prediction error: covariance penalties and cross-validation. JASA, 99:619-632, 2004.
-
(2004)
JASA
, vol.99
, pp. 619-632
-
-
Efron, B.1
-
9
-
-
85169997994
-
-
B. Efron, T. Hastie T, I. Johnstone I, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407-499, 2004.
-
B. Efron, T. Hastie T, I. Johnstone I, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407-499, 2004.
-
-
-
-
10
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. PNAS, 95:14863-14868, 1998.
-
(1998)
PNAS
, vol.95
, pp. 14863-14868
-
-
Eisen, M.1
Spellman, P.2
Brown, P.3
Botstein, D.4
-
11
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its Oracle properties
-
J. Fan, and R. Li. Variable selection via nonconcave penalized likelihood and its Oracle properties. JASA, 96:1348-1360, 2001.
-
(2001)
JASA
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
12
-
-
0032269108
-
How many clusters? Which clustering methods? - Answers via model-based cluster analysis
-
C. Fraley, and A. E. Raftery. How many clusters? Which clustering methods? - Answers via model-based cluster analysis. The Computer Journal, 41:578-588, 1998.
-
(1998)
The Computer Journal
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
13
-
-
0035998835
-
Model-based clustering, discriminant analysis, and density estimation
-
C. Fraley, and A. E. Raftery. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97:611-631, 2002.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 611-631
-
-
Fraley, C.1
Raftery, A.E.2
-
14
-
-
33645279316
-
Bayesian regularization for normal mixture estimation and model-based clustering
-
Technical report 486, Dept. of Statistics, University of Washington
-
C. Fraley, and A. E. Raftery. Bayesian regularization for normal mixture estimation and model-based clustering. Technical report 486, Dept. of Statistics, University of Washington, 2005.
-
(2005)
-
-
Fraley, C.1
Raftery, A.E.2
-
15
-
-
8644255832
-
Clustering objects on subsets of attributes (with discussion)
-
J. H. Friedman, and J. J. Meulman. Clustering objects on subsets of attributes (with discussion). J. R. Stat. Soc. Ser. B, 66:815-849, 2004.
-
(2004)
J. R. Stat. Soc. Ser. B
, vol.66
, pp. 815-849
-
-
Friedman, J.H.1
Meulman, J.J.2
-
16
-
-
85142170070
-
-
D. Ghosh D, and A. M. Chinnaiyan. (2002). Mixture modeling of gene expression data from microarray experiments. Bioinformatics, 18:275-286, 2002.
-
D. Ghosh D, and A. M. Chinnaiyan. (2002). Mixture modeling of gene expression data from microarray experiments. Bioinformatics, 18:275-286, 2002.
-
-
-
-
17
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
18
-
-
0000357775
-
On use of the EM for penalized likelihood estimation
-
P. J. Green. On use of the EM for penalized likelihood estimation. J. R. Stat. Soc. Ser. B, 52:443-452, 1990.
-
(1990)
J. R. Stat. Soc. Ser. B
, vol.52
, pp. 443-452
-
-
Green, P.J.1
-
19
-
-
0003684449
-
-
Springer
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, 2001.
-
(2001)
The Elements of Statistical Learning. Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
33646705989
-
Discussion of 'Clustering objects on subsets of attributes' by Friedman and Meulman
-
P. D. Hoff. Discussion of 'Clustering objects on subsets of attributes' by Friedman and Meulman. J. R. Stat. Soc. Ser. B, 66:845-846, 2004.
-
(2004)
J. R. Stat. Soc. Ser. B
, vol.66
, pp. 845-846
-
-
Hoff, P.D.1
-
21
-
-
33644863012
-
Subset clustering of binary sequences, with an application to genomic abnormality data
-
P. D. Hoff. Subset clustering of binary sequences, with an application to genomic abnormality data. Biometrics, 61:1027-1036, 2005.
-
(2005)
Biometrics
, vol.61
, pp. 1027-1036
-
-
Hoff, P.D.1
-
22
-
-
33645992615
-
Model-based subspace clustering
-
P. D. Hoff. Model-based subspace clustering. Bayesian Analysis, 1:321-344, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 321-344
-
-
Hoff, P.D.1
-
23
-
-
0034616930
-
Functional Discovery via a Compendium of Expression Profiles
-
T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend. Functional Discovery via a Compendium of Expression Profiles. Cell, 102:109-126, 2000.
-
(2000)
Cell
, vol.102
, pp. 109-126
-
-
Hughes, T.R.1
Marton, M.J.2
Jones, A.R.3
Roberts, C.J.4
Stoughton, R.5
Armour, C.D.6
Bennett, H.A.7
Coffey, E.8
Dai, H.9
He, Y.D.10
Kidd, M.J.11
King, A.M.12
Meyer, M.R.13
Slade, D.14
Lum, P.Y.15
Stepaniants, S.B.16
Shoemaker, D.D.17
Gachotte, D.18
Chakraburtty, K.19
Simon, J.20
Bard, M.21
Friend, S.H.22
more..
-
24
-
-
22544479764
-
Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
-
A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20:50-67, 2005.
-
(2005)
Statistical Science
, vol.20
, pp. 50-67
-
-
Jasra, A.1
Holmes, C.C.2
Stephens, D.A.3
-
25
-
-
33845734547
-
Variable selection in clustering via Dirichlet process mixture models
-
S. Kim, M. G. Tadesse, and M. Vannucci. Variable selection in clustering via Dirichlet process mixture models. Biometrika, 93:877-893, 2006.
-
(2006)
Biometrika
, vol.93
, pp. 877-893
-
-
Kim, S.1
Tadesse, M.G.2
Vannucci, M.3
-
26
-
-
18144444239
-
Cluster-Rasch models for microarray gene expression data
-
2: research0031.1-0031.13
-
H. Li, and F. Hong. Cluster-Rasch models for microarray gene expression data. Genome Biology, 2: research0031.1-0031.13, 2001.
-
(2001)
Genome Biology
-
-
Li, H.1
Hong, F.2
-
27
-
-
15044339834
-
Bayesian clustering with variable and transformation selection (with discussion)
-
J. S. Liu, J. L. Zhang, M. J. Palumbo, C. E. Lawrence. Bayesian clustering with variable and transformation selection (with discussion). Bayesian Statistics, 7:249-275, 2003.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 249-275
-
-
Liu, J.S.1
Zhang, J.L.2
Palumbo, M.J.3
Lawrence, C.E.4
-
28
-
-
32844472040
-
Feature selection in k-median clustering
-
La Buena Vista, FL
-
O. L. Mangasarian, and E. W. Wild. Feature selection in k-median clustering. Proceedings of SIAM International Conference on Data Mining, Workshop on Clustering High Dimensional Data and its Applications, April 24, 2004, La Buena Vista, FL, pages 23-28.
-
(2004)
Proceedings of SIAM International Conference on Data Mining, Workshop on Clustering High Dimensional Data and its Applications, April 24
, pp. 23-28
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
29
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
G. J. McLachlan, R. W. Bean, and D. Peel. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18:413-422, 2002.
-
(2002)
Bioinformatics
, vol.18
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
32
-
-
9144242935
-
MIPS: Analysis and annotation of proteins from whole genomes
-
H. W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Guldener, G. Mannhaupt, M. Munsterkotter, P. Pagel, N. Strack, V. Stumpflen, J. Warfsmann, and A. Ruepp. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res., 32:D41-D44, 2004.
-
(2004)
Nucleic Acids Res
, vol.32
-
-
Mewes, H.W.1
Amid, C.2
Arnold, R.3
Frishman, D.4
Guldener, U.5
Mannhaupt, G.6
Munsterkotter, M.7
Pagel, P.8
Strack, N.9
Stumpflen, V.10
Warfsmann, J.11
Ruepp, A.12
-
33
-
-
0035999977
-
A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
-
W. Pan. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics, 12:546-554, 2002.
-
(2002)
Bioinformatics
, vol.12
, pp. 546-554
-
-
Pan, W.1
-
34
-
-
33750022956
-
Semi-supervised learning via penalized mixture model with application to microarray sample classification
-
W. Pan, X. Shen, A. Jiang, and R. P. Hebbel. Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics, 22:2388-2395, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 2388-2395
-
-
Pan, W.1
Shen, X.2
Jiang, A.3
Hebbel, R.P.4
-
35
-
-
34249096870
-
-
A. E. Raftery. Discussion of Bayesian clustering with variable and transformation selection by Liu et al. Bayesian Statistics, 7:266-271, 2003.
-
A. E. Raftery. Discussion of "Bayesian clustering with variable and transformation selection" by Liu et al. Bayesian Statistics, 7:266-271, 2003.
-
-
-
-
37
-
-
18244378520
-
On Bayesian analysis of mixtures with an unknown number of components
-
S. Richardson, and P. J. Green. On Bayesian analysis of mixtures with an unknown number of components. JRSS-B, 59:731-758, 1997.
-
(1997)
JRSS-B
, vol.59
, pp. 731-758
-
-
Richardson, S.1
Green, P.J.2
-
38
-
-
0000120766
-
Estimating the dimensions of a model
-
G. Schwarz. Estimating the dimensions of a model. Annals of Statistics, 6:461-464, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
41
-
-
0034911875
-
An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
-
J. G. Thomas, J. M. Olson, S. J. Tapscott, and L. P. Zhao. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research, 11:1227-1236, 2001.
-
(2001)
Genome Research
, vol.11
, pp. 1227-1236
-
-
Thomas, J.G.1
Olson, J.M.2
Tapscott, S.J.3
Zhao, L.P.4
-
42
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
R. Tibshirani. Regression shrinkage and selection via the Lasso. JRSS-B, 58:267-288, 1996.
-
(1996)
JRSS-B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
43
-
-
2342533421
-
Class prediction by nearest shrunken centroids, with application to DNA microarrays
-
R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Class prediction by nearest shrunken centroids, with application to DNA microarrays. Statistical Science, 18:104-117, 2003.
-
(2003)
Statistical Science
, vol.18
, pp. 104-117
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
45
-
-
0036649020
-
Large-scale prediction of saccharomyces cerevisiae gene function using overlapping transcriptional clusters
-
L. F. Wu, T. R. Hughes, A. P. Davierwala, M. D. Robinson, R. Stoughton, and S. J. Altschuler. Large-scale prediction of saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nature Genetics, 31:255-265, 2002.
-
(2002)
Nature Genetics
, vol.31
, pp. 255-265
-
-
Wu, L.F.1
Hughes, T.R.2
Davierwala, A.P.3
Robinson, M.D.4
Stoughton, R.5
Altschuler, S.J.6
-
46
-
-
31044452892
-
Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data
-
G. Xiao, and W. Pan. Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data. Journal of Bioinformatics and Computational Biology, 3:1371-1389, 2005.
-
(2005)
Journal of Bioinformatics and Computational Biology
, vol.3
, pp. 1371-1389
-
-
Xiao, G.1
Pan, W.2
-
47
-
-
0034800371
-
Principal component analysis for clustering gene expression data
-
K. Y. Yeung, and W. L. Ruzzo. Principal component analysis for clustering gene expression data. Bioinformatics, 17:763-774, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 763-774
-
-
Yeung, K.Y.1
Ruzzo, W.L.2
-
48
-
-
0034782618
-
Model-based clustering and data transformations for gene expression data
-
K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo. Model-based clustering and data transformations for gene expression data. Bioinformatics, 17:977-987, 2001.
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.Y.1
Fraley, C.2
Murua, A.3
Raftery, A.E.4
Ruzzo, W.L.5
-
49
-
-
0036790999
-
Transitive functional annotation by shortest-path analysis of gene expression data
-
X. Zhou, M. C. Kao, and W. H. Wong. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA, 99:12783-12788, 2002.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 12783-12788
-
-
Zhou, X.1
Kao, M.C.2
Wong, W.H.3
-
50
-
-
33645581305
-
On the "Degrees of Freedom" of the Lasso
-
Technical report, Dept. of Statistics, Stanford University, Available at
-
H. Zou, T. Hastie, and R. Tibshirani. On the "Degrees of Freedom" of the Lasso. Technical report, Dept. of Statistics, Stanford University, 2004. Available at http://stat.stanford.edu/~hastie/pub.htm.
-
(2004)
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|