-
1
-
-
78650238917
-
-
Analyzing dissimilarity matrices using Kohonen maps, in: Proceeding of IFCS96
-
C. Ambroise, G. Govaert, Analyzing dissimilarity matrices using Kohonen maps, in: Proceeding of IFCS96, vol. 1, 1996, pp. 425-430.
-
(1996)
, vol.1
, pp. 425-430
-
-
Ambroise, C.1
Govaert, G.2
-
2
-
-
10944268652
-
-
Adaptive second order self-organizing mapping for 2D pattern representation, in: International Joint Conference on Neural Networks 2004,
-
B. Arnonkijpanich, C. Lursinsap, Adaptive second order self-organizing mapping for 2D pattern representation, in: International Joint Conference on Neural Networks 2004, 2004, pp. 775-780.
-
(2004)
, pp. 775-780
-
-
Arnonkijpanich, B.1
Lursinsap, C.2
-
3
-
-
78650240064
-
-
UCI Machine Learning Repository [〈〉], Irvine, CA, University of California, School of Information and Computer Science,
-
A. Asuncion, D.J. Newman, UCI Machine Learning Repository [〈〉], Irvine, CA, University of California, School of Information and Computer Science, 2007. http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(2007)
-
-
Asuncion, A.1
Newman, D.J.2
-
4
-
-
85153959666
-
Convergence properties of the k-means algorithm
-
MIT Press, G. Tesauro, D.S. Touretzky, T.K. Leen (Eds.)
-
Bottou L., Bengio Y. Convergence properties of the k-means algorithm. Neural Information Processing Systems 1994 1995, 585-592. MIT Press. G. Tesauro, D.S. Touretzky, T.K. Leen (Eds.).
-
(1995)
Neural Information Processing Systems 1994
, pp. 585-592
-
-
Bottou, L.1
Bengio, Y.2
-
6
-
-
0345404393
-
Theoretical aspects of the SOM algorithm
-
Cottrell M., Fort J.C., Pagès G. Theoretical aspects of the SOM algorithm. Neurocomputing 1999, 21:119-138.
-
(1999)
Neurocomputing
, vol.21
, pp. 119-138
-
-
Cottrell, M.1
Fort, J.C.2
Pagès, G.3
-
7
-
-
78650232790
-
-
Learning internal representations from grey-scale images: an example of extensional programming, in: Ninth Annual Conference of the Cognitive Science Society, Hillsdale Erlbaum,
-
G. Cottrell, P. Munro, D. Zipser, Learning internal representations from grey-scale images: an example of extensional programming, in: Ninth Annual Conference of the Cognitive Science Society, Hillsdale Erlbaum, 1987, pp. 462-473.
-
(1987)
, pp. 462-473
-
-
Cottrell, G.1
Munro, P.2
Zipser, D.3
-
8
-
-
33746583167
-
Batch and median neural gas
-
Cottrell M., Hammer B., Hasenfuss A., Villmann T. Batch and median neural gas. Neural Networks 2006, 19:762-771.
-
(2006)
Neural Networks
, vol.19
, pp. 762-771
-
-
Cottrell, M.1
Hammer, B.2
Hasenfuss, A.3
Villmann, T.4
-
9
-
-
58549087543
-
-
Pg-means: learning the number of clusters in data, in: NIPS
-
Y. Feng, G. Hamerly, Pg-means: learning the number of clusters in data, in: NIPS, 2006, pp. 393-400.
-
(2006)
, pp. 393-400
-
-
Feng, Y.1
Hamerly, G.2
-
10
-
-
33745902277
-
-
Advantages and drawbacks of the Batch Kohonen algorithm, in: M. Verleysen (Ed.), European Symposium on Artificial Neural Networks'2002, D Facto,
-
J.-C. Fort, P. Letrémy, M. Cottrell, Advantages and drawbacks of the Batch Kohonen algorithm, in: M. Verleysen (Ed.), European Symposium on Artificial Neural Networks'2002, D Facto, 2002, pp. 223-230.
-
(2002)
, pp. 223-230
-
-
Fort, J.-C.1
Letrémy, P.2
Cottrell, M.3
-
12
-
-
0344972928
-
Self-organizing maps: generalizations and new optimization techniques
-
Graepel T., Burger M., Obermayer K. Self-organizing maps: generalizations and new optimization techniques. Neurocomputing 1998, 21:173-190.
-
(1998)
Neurocomputing
, vol.21
, pp. 173-190
-
-
Graepel, T.1
Burger, M.2
Obermayer, K.3
-
14
-
-
78650239486
-
-
Learning the k in k-means, in: NIPS,
-
G. Hamerly, C. Elkan, Learning the k in k-means, in: NIPS, 2003, pp. 281-288.
-
(2003)
, pp. 281-288
-
-
Hamerly, G.1
Elkan, C.2
-
16
-
-
0035506768
-
Self-organizing maps, vector quantization, and mixture modeling
-
Heskes T. Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 2001, 12:1299-1305.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 1299-1305
-
-
Heskes, T.1
-
17
-
-
84943234961
-
Error potentials for self-organization
-
San Francisco, IEEE, New York
-
Heskes T., Kappen B. Error potentials for self-organization. International Conference on Neural Networks 1993, vol. 3:1219-1223. San Francisco, IEEE, New York.
-
(1993)
International Conference on Neural Networks
, vol.3
, pp. 1219-1223
-
-
Heskes, T.1
Kappen, B.2
-
19
-
-
0348139702
-
Dimension reduction by local principal component analysis
-
Kambhatla A., Leen T.K. Dimension reduction by local principal component analysis. Neural Computation 1997, 9(7):1493-1516.
-
(1997)
Neural Computation
, vol.9
, Issue.7
, pp. 1493-1516
-
-
Kambhatla, A.1
Leen, T.K.2
-
21
-
-
0003023542
-
Self-organizing maps: optimization approaches
-
North-Holland, Amsterdam, T. Kohonen (Ed.)
-
Kohonen T. Self-organizing maps: optimization approaches. Artificial Neural Networks 1991, 981-990. North-Holland, Amsterdam. T. Kohonen (Ed.).
-
(1991)
Artificial Neural Networks
, pp. 981-990
-
-
Kohonen, T.1
-
22
-
-
0000761101
-
Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM
-
Kohonen T., Kaski S., Lappalainen H. Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM. Neural Computation 1997, 9(6):1321-1344.
-
(1997)
Neural Computation
, vol.9
, Issue.6
, pp. 1321-1344
-
-
Kohonen, T.1
Kaski, S.2
Lappalainen, H.3
-
23
-
-
0344972931
-
Self-organizing maps of symbol strings
-
Kohonen T., Somervuo P. Self-organizing maps of symbol strings. Neurocomputing 1998, 21(1-3):19-30.
-
(1998)
Neurocomputing
, vol.21
, Issue.1-3
, pp. 19-30
-
-
Kohonen, T.1
Somervuo, P.2
-
24
-
-
0031382558
-
-
Vector quantization using genetic K-means algorithm for image compression, in: International Conference on Information, Communications and Signal Processing,
-
K. Krishna, K.R. Ramakrishnan, M.A.L. Thathachar, Vector quantization using genetic K-means algorithm for image compression, in: International Conference on Information, Communications and Signal Processing, vol. 3, 1997, pp. 1585-1587.
-
(1997)
, vol.3
, pp. 1585-1587
-
-
Krishna, K.1
Ramakrishnan, K.R.2
Thathachar, M.A.L.3
-
25
-
-
0345257348
-
Topological local principal component analysis
-
Liu Z.-Y., Xu L. Topological local principal component analysis. Neurocomputing 2003, 55:739-745.
-
(2003)
Neurocomputing
, vol.55
, pp. 739-745
-
-
Liu, Z.-Y.1
Xu, L.2
-
27
-
-
0024900153
-
Self-organisation: a derivation from first principles of a class of learning algorithms
-
IEEE Computer Society Press
-
Luttrell S. Self-organisation: a derivation from first principles of a class of learning algorithms. International Joint Conference on Neural Networks 1989, vol. 2:495-498. IEEE Computer Society Press.
-
(1989)
International Joint Conference on Neural Networks
, vol.2
, pp. 495-498
-
-
Luttrell, S.1
-
28
-
-
78650251644
-
-
Matlab Toolbox for Dimensionality Reduction, MICC, Maastricht University, [〈〉]
-
L.J.P. van der Maaten, E.O. Postma, H.J. van den Herik, Matlab Toolbox for Dimensionality Reduction, MICC, Maastricht University, [〈〉], 2007. http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html.
-
(2007)
-
-
van der Maaten, L.J.P.1
Postma, E.O.2
van den Herik, H.J.3
-
29
-
-
78650232372
-
-
Selbstorganisierende neuronale Netzwerkmodelle zur Bewegungssteuerung, Sankt Augustin, 1992, Dissertationen zur künstlichen Intelligenz,
-
T. Martinetz, Selbstorganisierende neuronale Netzwerkmodelle zur Bewegungssteuerung, Sankt Augustin, 1992, Dissertationen zur künstlichen Intelligenz, 1992.
-
(1992)
-
-
Martinetz, T.1
-
30
-
-
0027632248
-
'Neural gas' network for vector quantization and its application to time series prediction
-
Martinetz T., Berkovich S., Schulten K. 'Neural gas' network for vector quantization and its application to time series prediction. IEEE Transactions on Neural networks 1993, 4(4):558-569.
-
(1993)
IEEE Transactions on Neural networks
, vol.4
, Issue.4
, pp. 558-569
-
-
Martinetz, T.1
Berkovich, S.2
Schulten, K.3
-
32
-
-
33746111259
-
Learning an optimal distance metric in a linguistic vector space
-
Mochihashi D., Kikui G., Kita K. Learning an optimal distance metric in a linguistic vector space. Systems and Computers in Japan 2006, 37(9):12-21.
-
(2006)
Systems and Computers in Japan
, vol.37
, Issue.9
, pp. 12-21
-
-
Mochihashi, D.1
Kikui, G.2
Kita, K.3
-
33
-
-
8644270422
-
An extension of neural gas to local PCA
-
Möller R., Hoffmann H. An extension of neural gas to local PCA. Neurocomputing 2004, 62:305-326.
-
(2004)
Neurocomputing
, vol.62
, pp. 305-326
-
-
Möller, R.1
Hoffmann, H.2
-
35
-
-
9144260753
-
Improved learning of Riemannian metrics for exploratory analysis
-
Peltonen J., Klami A., Kaski S. Improved learning of Riemannian metrics for exploratory analysis. Neural Networks 2004, 17:1087-1100.
-
(2004)
Neural Networks
, vol.17
, pp. 1087-1100
-
-
Peltonen, J.1
Klami, A.2
Kaski, S.3
-
36
-
-
0032202775
-
Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
-
Rose K. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE 1998, 86(11):2210-2239.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2210-2239
-
-
Rose, K.1
-
37
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network
-
Sanger T.D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 1989, 2(6):459-473.
-
(1989)
Neural Networks
, vol.2
, Issue.6
, pp. 459-473
-
-
Sanger, T.D.1
-
38
-
-
9144234927
-
Self organizing maps and clustering for matrix data
-
Seo S., Obermayer K. Self organizing maps and clustering for matrix data. Neural Networks 2004, 17(8-9):1211-1229.
-
(2004)
Neural Networks
, vol.17
, Issue.8-9
, pp. 1211-1229
-
-
Seo, S.1
Obermayer, K.2
-
40
-
-
38449091680
-
-
Relevance matrices in LVQ, in: M. Verleysen (Ed.), European Symposium on Neural Networks 2007
-
P. Schneider, M. Biehl, B. Hammer, Relevance matrices in LVQ, in: M. Verleysen (Ed.), European Symposium on Neural Networks 2007, 2007, pp. 37-42.
-
(2007)
, pp. 37-42
-
-
Schneider, P.1
Biehl, M.2
Hammer, B.3
-
41
-
-
33745899587
-
-
Growing hierarchical principal components analysis self-organizing map, in: Advances in Neural Networks-ISNN 2006, Lecture Notes in Computer Science, Springer,
-
L.Z. Stones, Y. Zhang, C.L. Jian, Growing hierarchical principal components analysis self-organizing map, in: Advances in Neural Networks-ISNN 2006, Lecture Notes in Computer Science, vol. 3971, Springer, 2006, pp. 701-706.
-
(2006)
, vol.3971
, pp. 701-706
-
-
Stones, L.Z.1
Zhang, Y.2
Jian, C.L.3
-
42
-
-
33846486102
-
A unified continuous optimization framework for center-based clustering methods
-
Teboulle M. A unified continuous optimization framework for center-based clustering methods. Journal of Machine Learning Research 2007, 8:65-102.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 65-102
-
-
Teboulle, M.1
-
43
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
Tipping M.E., Bishop C.M. Mixtures of probabilistic principal component analyzers. Neural Computation 1999, 11:443-482.
-
(1999)
Neural Computation
, vol.11
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
44
-
-
0025608647
-
An analysis of Kohonens self-organizing maps using a system of energy functions
-
Tolat V. An analysis of Kohonens self-organizing maps using a system of energy functions. Biological Cybernetics 1990, 64:155-164.
-
(1990)
Biological Cybernetics
, vol.64
, pp. 155-164
-
-
Tolat, V.1
-
45
-
-
0031097231
-
Topology preservation in self-organizing feature maps: exact definition and measurement
-
Villmann T., Der R., Herrmann M., Martinetz T. Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Transactions on Neural Networks 1997, 8(2):256-266.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.2
, pp. 256-266
-
-
Villmann, T.1
Der, R.2
Herrmann, M.3
Martinetz, T.4
-
46
-
-
0034187075
-
Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization
-
Wang Y., Freedman M.I., Kung S.-K. Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization. IEEE Transactions on Neural Networks 2000, 11(3):625-636.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.3
, pp. 625-636
-
-
Wang, Y.1
Freedman, M.I.2
Kung, S.-K.3
-
48
-
-
0035272084
-
Self-organizing mixture networks for probability density estimation
-
Yin H., Allinson N.M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks 2001, 12(2):405-411.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 405-411
-
-
Yin, H.1
Allinson, N.M.2
|