|
Volumn 3120, Issue , 2004, Pages 415-426
|
A framework for statistical clustering with a constant time approximation algorithms for K-median clustering
|
Author keywords
[No Author keywords available]
|
Indexed keywords
ALGORITHMS;
APPROXIMATION THEORY;
PRINCIPAL COMPONENT ANALYSIS;
PROBABILITY DISTRIBUTIONS;
REGRESSION ANALYSIS;
THEOREM PROVING;
VECTOR QUANTIZATION;
APPROXIMATION ALGORITHMS;
EUCLIDEAN DIMENSION;
K-MEDIAN CLUSTERING;
LINEAR REGRESSION;
OPTIMAL CLUSTERING;
ACCURACY PARAMETERS;
ARBITRARY DISTRIBUTION;
CLUSTERING PROBLEMS;
CONSTANT-TIME APPROXIMATIONS;
EUCLIDEAN DIMENSIONS;
SAMPLING-BASED ALGORITHMS;
STATISTICAL CLUSTERING;
STATISTICAL METHODS;
CLUSTERING ALGORITHMS;
|
EID: 9444254174
PISSN: 03029743
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1007/978-3-540-27819-1_29 Document Type: Conference Paper |
Times cited : (14)
|
References (8)
|