메뉴 건너뛰기




Volumn 3120, Issue , 2004, Pages 415-426

A framework for statistical clustering with a constant time approximation algorithms for K-median clustering

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; PRINCIPAL COMPONENT ANALYSIS; PROBABILITY DISTRIBUTIONS; REGRESSION ANALYSIS; THEOREM PROVING; VECTOR QUANTIZATION; APPROXIMATION ALGORITHMS;

EID: 9444254174     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-27819-1_29     Document Type: Conference Paper
Times cited : (14)

References (8)
  • 2
    • 0032167175 scopus 로고    scopus 로고
    • The minimax distortion Redundancy in empirical quantizer design
    • Peter Bartlett, Tamas Linder and gabor Lugosi "the minimax distortion Redundancy in empirical Quantizer Design" IEEE Transactions on Information theory, vol. 44, 1802-1813, 1998.
    • (1998) IEEE Transactions on Information Theory , vol.44 , pp. 1802-1813
    • Bartlett, P.1    Linder, T.2    Lugosi, G.3
  • 3
    • 0005098442 scopus 로고    scopus 로고
    • Empirical risk approximation: An induction principle for unsupervised learning
    • Institut for Informatik III, Universitat Bonn
    • Joachim Buhmann, "Empirical Risk Approximation: An Induction Principle for Unsupervised Learning" Technical Report IAI-TR-98-3, Institut for Informatik III, Universitat Bonn. 1998.
    • (1998) Technical Report , vol.IAI-TR-98-3
    • Buhmann, J.1
  • 4
    • 3142693304 scopus 로고    scopus 로고
    • A k-median algorithm with running time independent of data size
    • Special Issue on Theoretical Advances in Data Clustering (MLJ)
    • Adam Meyerson, Liadan O'Callaghan, and Serge Plotkin "A k-median Algorithm with Running Time Independent of Data Size" Journal of Machine Learning, Special Issue on Theoretical Advances in Data Clustering (MLJ) 2004.
    • (2004) Journal of Machine Learning
    • Meyerson, A.1    O'Callaghan, L.2    Plotkin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.