-
1
-
-
70449112553
-
Robust, complete, and efficient correlation clustering
-
USA
-
E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. Robust, complete, and efficient correlation clustering. In SDM, USA, 2007.
-
(2007)
SDM
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.-P.3
Kröger, P.4
Zimek, A.5
-
2
-
-
3142682233
-
K-means projective clustering
-
Paris, France, ACM
-
P. K. Agarwal and N. H. Mustafa. k-means projective clustering. In PODS, pages 155-165, Paris, France, 2004. ACM.
-
(2004)
PODS
, pp. 155-165
-
-
Agarwal, P.K.1
Mustafa, N.H.2
-
3
-
-
0036509717
-
Redefining clustering for high-dimensional applications
-
C. Aggarwal and P. Yu. Redefining clustering for high-dimensional applications. IEEE TKDE, 14(2):210-225, 2002.
-
(2002)
IEEE TKDE
, vol.14
, Issue.2
, pp. 210-225
-
-
Aggarwal, C.1
Yu, P.2
-
4
-
-
0347718066
-
Fast Algorithms for Projected Clustering
-
C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park. Fast algorithms for projected clustering. SIGMOD Rec., 28(2):61-72, 1999. (Pubitemid 129597324)
-
(1999)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.28
, Issue.2
, pp. 61-72
-
-
Aggarwal, C.C.1
Wolf, J.L.2
Yu, P.S.3
Procopiuc, C.4
Park, J.S.5
-
5
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec., 27(2):94-105, 1998. (Pubitemid 128655960)
-
(1998)
SIGMOD Record
, vol.27
, Issue.2
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
6
-
-
14544300820
-
Computing clusters of correlation connected objects
-
NY, USA
-
C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of correlation connected objects. In SIGMOD, pages 455-466, NY, USA, 2004.
-
(2004)
SIGMOD
, pp. 455-466
-
-
Böhm, C.1
Kailing, K.2
Kröger, P.3
Zimek, A.4
-
7
-
-
77952760641
-
Constrained locally weighted clustering
-
H. Cheng, K. A. Hua, and K. Vu. Constrained locally weighted clustering. PVLDB, 1(1):90-101, 2008.
-
(2008)
PVLDB
, vol.1
, Issue.1
, pp. 90-101
-
-
Cheng, H.1
Hua, K.A.2
Vu, K.3
-
8
-
-
77952784247
-
Finding clusters in subspaces of very large, multi-dimensional datasets
-
R. L. F. Cordeiro, A. J. M. Traina, C. Faloutsos, and C. Traina Jr. Finding clusters in subspaces of very large, multi-dimensional datasets. In ICDE, pages 625-636, 2010.
-
(2010)
ICDE
, pp. 625-636
-
-
Cordeiro, R.L.F.1
Traina, A.J.M.2
Faloutsos, C.3
Traina Jr., C.4
-
9
-
-
85030321143
-
Mapreduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI, 2004.
-
(2004)
OSDI
-
-
Dean, J.1
Ghemawat, S.2
-
10
-
-
80052662248
-
A data miner's story - getting to know the grand challenges
-
Slide 61. Available at
-
U. Fayyad. A data miner's story - getting to know the grand challenges. In Invited Innovation Talk, KDD, 2007: Slide 61. Available at: http://videolectures.net/kdd07-fayyad-dms/.
-
(2007)
Invited Innovation Talk, KDD
-
-
Fayyad, U.1
-
11
-
-
84880119194
-
Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations
-
U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations. SDM, 2010.
-
(2010)
SDM
-
-
Kang, U.1
Tsourakakis, C.2
Appel, A.P.3
Faloutsos, C.4
Leskovec, J.5
-
12
-
-
77951152705
-
Pegasus: A peta-scale graph mining system - implementation and observations
-
U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system - implementation and observations. ICDM, 2009.
-
(2009)
ICDM
-
-
Kang, U.1
Tsourakakis, C.2
Faloutsos, C.3
-
13
-
-
34547251368
-
A generic framework for efficient subspace clustering of high-dimensional data
-
DOI 10.1109/ICDM.2005.5, 1565686, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
-
H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst. A generic framework for efficient subspace clustering of high-dimensional data. In ICDM, pages 250-257, USA, 2005. (Pubitemid 47385700)
-
(2005)
Proceedings - IEEE International Conference on Data Mining, ICDM
, pp. 250-257
-
-
Kriegel, H.-P.1
Kroger, P.2
Renz, M.3
Wurst, S.4
-
14
-
-
67149084291
-
Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
H.-P.Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD, 3(1):1-58, 2009.
-
(2009)
ACM TKDD
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.-P.1
Kröger, P.2
Zimek, A.3
-
15
-
-
56349085999
-
Google's mapreduce programming model - revisited
-
R. Lämmel. Google's mapreduce programming model - revisited. Science of Computer Programming, 70:1-30, 2008.
-
(2008)
Science of Computer Programming
, vol.70
, pp. 1-30
-
-
Lämmel, R.1
-
16
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
-
G. Moise and J. Sander. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In KDD, pages 533-541, 2008.
-
(2008)
KDD
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
17
-
-
41149085604
-
Robust projected clustering
-
G. Moise, J. Sander, and M. Ester. Robust projected clustering. Knowl. Inf. Syst., 14(3):273-298, 2008.
-
(2008)
Knowl. Inf. Syst.
, vol.14
, Issue.3
, pp. 273-298
-
-
Moise, G.1
Sander, J.2
Ester, M.3
-
18
-
-
29844449492
-
CURLER: Finding and visualizing nonlinear correlation clusters
-
DOI 10.1145/1066157.1066211, SIGMOD 2005: Proceedings of the ACM SIGMOD International Conference on Management of Data
-
A. K. H. Tung, X. Xu, and B. C. Ooi. Curler: finding and visualizing nonlinear correlation clusters. In SIGMOD, pages 467-478, New York, NY, USA, 2005. (Pubitemid 43038950)
-
(2005)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 467-478
-
-
Tung, A.K.H.1
Xu, X.2
Ooi, B.C.3
|