메뉴 건너뛰기




Volumn , Issue , 2011, Pages 690-698

Clustering very large multi-dimensional datasets with MapReduce

Author keywords

Algorithms; Design; Experimentation; Performance

Indexed keywords

CLUSTERING ALGORITHMS; COST FUNCTIONS; COSTS;

EID: 80052686089     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020516     Document Type: Conference Paper
Times cited : (142)

References (19)
  • 2
    • 3142682233 scopus 로고    scopus 로고
    • K-means projective clustering
    • Paris, France, ACM
    • P. K. Agarwal and N. H. Mustafa. k-means projective clustering. In PODS, pages 155-165, Paris, France, 2004. ACM.
    • (2004) PODS , pp. 155-165
    • Agarwal, P.K.1    Mustafa, N.H.2
  • 3
    • 0036509717 scopus 로고    scopus 로고
    • Redefining clustering for high-dimensional applications
    • C. Aggarwal and P. Yu. Redefining clustering for high-dimensional applications. IEEE TKDE, 14(2):210-225, 2002.
    • (2002) IEEE TKDE , vol.14 , Issue.2 , pp. 210-225
    • Aggarwal, C.1    Yu, P.2
  • 5
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec., 27(2):94-105, 1998. (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 6
    • 14544300820 scopus 로고    scopus 로고
    • Computing clusters of correlation connected objects
    • NY, USA
    • C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of correlation connected objects. In SIGMOD, pages 455-466, NY, USA, 2004.
    • (2004) SIGMOD , pp. 455-466
    • Böhm, C.1    Kailing, K.2    Kröger, P.3    Zimek, A.4
  • 7
    • 77952760641 scopus 로고    scopus 로고
    • Constrained locally weighted clustering
    • H. Cheng, K. A. Hua, and K. Vu. Constrained locally weighted clustering. PVLDB, 1(1):90-101, 2008.
    • (2008) PVLDB , vol.1 , Issue.1 , pp. 90-101
    • Cheng, H.1    Hua, K.A.2    Vu, K.3
  • 8
    • 77952784247 scopus 로고    scopus 로고
    • Finding clusters in subspaces of very large, multi-dimensional datasets
    • R. L. F. Cordeiro, A. J. M. Traina, C. Faloutsos, and C. Traina Jr. Finding clusters in subspaces of very large, multi-dimensional datasets. In ICDE, pages 625-636, 2010.
    • (2010) ICDE , pp. 625-636
    • Cordeiro, R.L.F.1    Traina, A.J.M.2    Faloutsos, C.3    Traina Jr., C.4
  • 9
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 80052662248 scopus 로고    scopus 로고
    • A data miner's story - getting to know the grand challenges
    • Slide 61. Available at
    • U. Fayyad. A data miner's story - getting to know the grand challenges. In Invited Innovation Talk, KDD, 2007: Slide 61. Available at: http://videolectures.net/kdd07-fayyad-dms/.
    • (2007) Invited Innovation Talk, KDD
    • Fayyad, U.1
  • 11
    • 84880119194 scopus 로고    scopus 로고
    • Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations
    • U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations. SDM, 2010.
    • (2010) SDM
    • Kang, U.1    Tsourakakis, C.2    Appel, A.P.3    Faloutsos, C.4    Leskovec, J.5
  • 12
    • 77951152705 scopus 로고    scopus 로고
    • Pegasus: A peta-scale graph mining system - implementation and observations
    • U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system - implementation and observations. ICDM, 2009.
    • (2009) ICDM
    • Kang, U.1    Tsourakakis, C.2    Faloutsos, C.3
  • 14
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P.Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD, 3(1):1-58, 2009.
    • (2009) ACM TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 15
    • 56349085999 scopus 로고    scopus 로고
    • Google's mapreduce programming model - revisited
    • R. Lämmel. Google's mapreduce programming model - revisited. Science of Computer Programming, 70:1-30, 2008.
    • (2008) Science of Computer Programming , vol.70 , pp. 1-30
    • Lämmel, R.1
  • 16
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • G. Moise and J. Sander. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In KDD, pages 533-541, 2008.
    • (2008) KDD , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 17
    • 41149085604 scopus 로고    scopus 로고
    • Robust projected clustering
    • G. Moise, J. Sander, and M. Ester. Robust projected clustering. Knowl. Inf. Syst., 14(3):273-298, 2008.
    • (2008) Knowl. Inf. Syst. , vol.14 , Issue.3 , pp. 273-298
    • Moise, G.1    Sander, J.2    Ester, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.