메뉴 건너뛰기




Volumn 22, Issue 4, 2013, Pages

Multi-objective evolutionary algorithms for filter based feature selection in classification

Author keywords

evolutionary algorithms; Feature selection; filter approaches; genetic algorithms; multi objective optimisation

Indexed keywords

CLASSIFICATION PERFORMANCE; EVOLUTIONARY COMPUTATION TECHNIQUES; EVOLUTIONARY MULTI-OBJECTIVE ALGORITHMS; FEATURE SELECTION ALGORITHM; FILTER APPROACH; MULTI OBJECTIVE EVOLUTIONARY ALGORITHMS; MULTI-OBJECTIVE GENETIC ALGORITHM; STRENGTH PARETO EVOLUTIONARY ALGORITHM;

EID: 84883206290     PISSN: 02182130     EISSN: 17936349     Source Type: Journal    
DOI: 10.1142/S0218213013500243     Document Type: Article
Times cited : (73)

References (43)
  • 1
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, Feature selection for classification, Intelligent Data Analysis 1(4) (1997) 131-156.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 3
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • A. Unler and A. Murat, A discrete particle swarm optimization method for feature selection in binary classification problems, European Journal of Operational Research 206(3) (2010) 528-539.
    • (2010) European Journal of Operational Research , vol.206 , Issue.3 , pp. 528-539
    • Unler, A.1    Murat, A.2
  • 4
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John,Wrappers for feature subset selection, Artificial Intelligence 97 (1997) 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 5
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A. Whitney, A direct method of nonparametric measurement selection, IEEE Trans- actions on Computers C20(9) (1971) 1100-1103.
    • (1971) IEEE Trans- Actions on Computers C , vol.20 , Issue.9 , pp. 1100-1103
    • Whitney, A.1
  • 6
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • T. Marill and D. Green, On the effectiveness of receptors in recognition systems, IEEE Transactions on Information Theory 9(1) 11-17 (1963).
    • (1963) IEEE Transactions on Information Theory , vol.9 , Issue.1 , pp. 11-17
    • Marill, T.1    Green, D.2
  • 7
    • 79958252965 scopus 로고    scopus 로고
    • An improved particle swarm optimization for feature selection
    • Y. Liu, G. Wang, H. Chen, and H. Dong, An improved particle swarm optimization for feature selection, Journal of Bionic Engineering 8(2) (2011) 191-200.
    • (2011) Journal of Bionic Engineering , vol.8 , Issue.2 , pp. 191-200
    • Liu, Y.1    Wang, G.2    Chen, H.3    Dong, H.4
  • 8
    • 8844244184 scopus 로고    scopus 로고
    • Genetic algorithm with fuzzy fitness function for feature selection in
    • B. Chakraborty, Genetic algorithm with fuzzy fitness function for feature selection, in IEEE Int. Symp. on Industrial Electronics (ISIE02), Vol. 1 (2002), pp. 315-319.
    • (2002) IEEE Int Symp on Industrial Electronics ISIE02 , vol.1 , pp. 315-319
    • Chakraborty, B.1
  • 9
    • 67650675481 scopus 로고    scopus 로고
    • Genetic programming for feature subset ranking in binary classification problems
    • K. Neshatian andM. Zhang, Genetic programming for feature subset ranking in binary classification problems, in European Conference on Genetic Programming (2009), pp. 121-132.
    • (2009) European Conference on Genetic Programming , pp. 121-132
    • Neshatian, K.1    Zhang, M.2
  • 19
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T. G. Dietterich, Learning boolean concepts in the presence of many irrelevant features, Artificial Intelligence 69 (1994) 279-305.
    • (1994) Artificial Intelligence , vol.69 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 20
    • 60249087028 scopus 로고    scopus 로고
    • Different metaheuristic strategies to solve the feature selection problem
    • S. C. Yusta, Different metaheuristic strategies to solve the feature selection problem, Pattern Recognition Letters 30 (2009) 525-534.
    • (2009) Pattern Recognition Letters , vol.30 , pp. 525-534
    • Yusta, S.C.1
  • 23
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimizationfor support vector machines
    • C.-L. Huang and C.-J. Wang, A GA-based feature selection and parameters optimizationfor support vector machines, Expert Systems with Applications 31(2) (2006) 231-240.
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 25
    • 76049126653 scopus 로고    scopus 로고
    • Multi-objective feature selection in QSAR using a machine learning approach
    • 1509-1523
    • A. J. Soto, R. L. Cecchini, G. E. Vazquez, and I. Ponzoni, Multi-objective feature selection in QSAR using a machine learning approach, QSAR & Combinatorial Science 28(11-12) (2009) 1509-1523.
    • (2009) QSAR & Combinatorial Science , vol.28 , Issue.11-12
    • Soto, A.J.1    Cecchini, R.L.2    Vazquez, G.E.3    Ponzoni, I.4
  • 26
    • 69249205580 scopus 로고    scopus 로고
    • Parallel multiobjective memetic rbfnns design and feature selection for function approximation problems
    • A. Guillen, H. Pomares, J. Gonzalez, I. Rojas, O. Valenzuela, and B. Prieto, Parallel multiobjective memetic rbfnns design and feature selection for function approximation problems, Neurocomputing 72(16-18) (2009) 3541-3555.
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3541-3555
    • Guillen, A.1    Pomares, H.2    Gonzalez, J.3    Rojas, I.4    Valenzuela, O.5    Prieto, B.6
  • 27
    • 73549103101 scopus 로고    scopus 로고
    • Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications
    • B. Huang, B. Buckley, and T.-M. Kechadi, Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications, Expert Systems with Applications 37(5) (2010) 3638-3646.
    • Expert Systems with Applications 37( , vol.5 , Issue.2010 , pp. 3638-3646
    • Huang, B.1    Buckley, B.2    Kechadi, T.-M.3
  • 31
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, Feature selection based on rough sets and particle swarm optimization, Pattern Recognition Letters, 28(4) (2007) 459-471.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 34
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • S. W. Lin, K. C. Ying, S. C. Chen, and Z. J. Lee, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Systems with Applications 35(4) (2008) 1817-1824.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1817-1824
    • Lin, S.W.1    Ying, K.C.2    Chen, S.C.3    Lee, Z.J.4
  • 35
    • 62449087097 scopus 로고    scopus 로고
    • A rough set based hybrid method to feature selection, in Int
    • H. Ming, A rough set based hybrid method to feature selection, in Int. Symp. on Knowledge Acquisition and Modeling (KAM 08) (2008), pp. 585-588.
    • (2008) Symp on Knowledge Acquisition and Modeling KAM 08 , pp. 585-588
    • Ming, H.1
  • 36
    • 33845621875 scopus 로고    scopus 로고
    • A hybrid approach for feature subset selection using neural networks and ant colony optimization
    • R. K. Sivagaminathan and S. Ramakrishnan, A hybrid approach for feature subset selection using neural networks and ant colony optimization, Expert Systems with Applications 33(1) (2007) 49-60.
    • (2007) Expert Systems with Applications , vol.33 , Issue.1 , pp. 49-60
    • Sivagaminathan, R.K.1    Ramakrishnan, S.2
  • 37
    • 28444441282 scopus 로고    scopus 로고
    • Ant colony optimization based network intrusion feature selection and detection, in Int
    • H. H. Gao, H. H. Yang, and X. Y. Wang, Ant colony optimization based network intrusion feature selection and detection, in Int. Conf. on Machine Learning and Cy- bernetics, Vol. 6 (2005), pp. 49-60.
    • (2005) Conf on Machine Learning and Cy- Bernetics , vol.6 , pp. 49-60
    • Gao, H.H.1    Yang, H.H.2    Wang, X.Y.3
  • 39
    • 33750714570 scopus 로고    scopus 로고
    • JavaEvA - A java framework for evolutionary algorithms
    • Centre for Bioinformatics, Tubingen, University of Tubingen
    • F. Streichert and H. Ulmer, JavaEvA - A java framework for evolutionary algorithms, Technical Report WSI-2005-06, Centre for Bioinformatics, Tubingen, University of Tubingen, (2005).
    • (2005) Technical Report WSI-2005-06
    • Streichert, F.1    Ulmer, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.