메뉴 건너뛰기




Volumn 3, Issue , 2009, Pages 2127-2136

Signal Transduction in the Escherichia coli SOS Response

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84882920749     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-0-12-374145-5.00258-8     Document Type: Chapter
Times cited : (6)

References (126)
  • 1
    • 85147079974 scopus 로고    scopus 로고
    • Simmons LA, J. J. Foti, S. E. Cohen, and G. C. Walker. Chapter 5.4.3, The SOS Regulatory Network. In: A. Böck RCI, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nyström, J. M. Slauch, and C. L. Squires editors. EcoSal-Escherichia coli and Salmonella: cellular and molecular biology. . Washington, D.C.: ASM Press; 25 July 2008, posting date
    • Simmons LA, J. J. Foti, S. E. Cohen, and G. C. Walker. Chapter 5.4.3, The SOS Regulatory Network. In: A. Böck RCI, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nyström, J. M. Slauch, and C. L. Squires editors. EcoSal-Escherichia coli and Salmonella: cellular and molecular biology. http://www.ecosal.org. Washington, D.C.: ASM Press; 25 July 2008, posting date.
  • 2
    • 0026511367 scopus 로고
    • A partially deficient mutant, recA1730, that fails to form normal nucleoprotein filaments
    • M Dutreix, B Burnett, A Bailone, et al. (1992) A partially deficient mutant, recA1730, that fails to form normal nucleoprotein filaments. Mol Gen Genet 232 489-497.
    • (1992) Mol Gen Genet , vol.232 , pp. 489-497
    • Dutreix, M.1    Burnett, B.2    Bailone, A.3
  • 3
    • 0021646246 scopus 로고
    • Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments
    • JD Griffith, LD Harris and J Register 3rd (1984) Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments. Cold Spring Harb Symp Quant Biol 49 553-559.
    • (1984) Cold Spring Harb Symp Quant Biol , vol.49 , pp. 553-559
    • Griffith, J.D.1    Harris, L.D.2    Register, J.3
  • 4
    • 0020489557 scopus 로고
    • Direct observation of complexes formed between recA protein and a fluorescent single-stranded deoxyribonucleic acid derivative
    • MS Silver and AR Fersht (1982) Direct observation of complexes formed between recA protein and a fluorescent single-stranded deoxyribonucleic acid derivative. Biochemistry 21 6066-6072.
    • (1982) Biochemistry , vol.21 , pp. 6066-6072
    • Silver, M.S.1    Fersht, A.R.2
  • 5
    • 0027375810 scopus 로고
    • Analysis of two distinct single-stranded DNA binding sites on the recA nucleoprotein filament
    • A Zlotnick, RS Mitchell, RK Steed and SL Brenner (1993) Analysis of two distinct single-stranded DNA binding sites on the recA nucleoprotein filament. J Biol Chem 268 22,525-22,530.
    • (1993) J Biol Chem , vol.268 , pp. 22,525-22,530
    • Zlotnick, A.1    Mitchell, R.S.2    Steed, R.K.3    Brenner, S.L.4
  • 6
    • 0342838572 scopus 로고
    • The lexA gene product represses its own promoter
    • R Brent and M Ptashne (1980) The lexA gene product represses its own promoter. Proc Natl Acad Sci U S A 77 1932-1936.
    • (1980) Proc Natl Acad Sci U S A , vol.77 , pp. 1932-1936
    • Brent, R.1    Ptashne, M.2
  • 7
    • 0019586165 scopus 로고
    • Mechanism of action of the lexA gene product
    • R Brent and M Ptashne (1981) Mechanism of action of the lexA gene product. Proc Natl Acad Sci U S A 78 4204-4208.
    • (1981) Proc Natl Acad Sci U S A , vol.78 , pp. 4204-4208
    • Brent, R.1    Ptashne, M.2
  • 8
    • 0026663108 scopus 로고
    • Activation of recA protein. The open helix model for LexA cleavage
    • E DiCapua, M Cuillel, E Hewat, et al. (1992) Activation of recA protein. The open helix model for LexA cleavage. J Mol Biol 226 707-719.
    • (1992) J Mol Biol , vol.226 , pp. 707-719
    • DiCapua, E.1    Cuillel, M.2    Hewat, E.3
  • 9
    • 0023780926 scopus 로고
    • Contacts between the LexA repressor – or its DNA binding domain – and the backbone of the recA operator
    • S Hurstel, M Granger-Schnarr and M Schnarr (1988) Contacts between the LexA repressor – or its DNA binding domain – and the backbone of the recA operator. EMBO J 7 269-275.
    • (1988) EMBO J , vol.7 , pp. 269-275
    • Hurstel, S.1    Granger-Schnarr, M.2    Schnarr, M.3
  • 10
    • 0025810994 scopus 로고
    • Mechanism of specific LexA cleavage: Autodigestion and the role of RecA coprotease
    • J Little (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73 411-422.
    • (1991) Biochimie , vol.73 , pp. 411-422
    • Little, J.1
  • 14
    • 0021167964 scopus 로고
    • Identification of the amino acid substitutions in two mutant forms of the RecA protein from Escherichia coli RecA441 and Rec629
    • KL Knight, KH Aoki, EL Ujita and K McEntee (1984) Identification of the amino acid substitutions in two mutant forms of the RecA protein from Escherichia coli RecA441 and Rec629. J Biol Chem 259 11,279-11,283.
    • (1984) J Biol Chem , vol.259 , pp. 11,279-11,283
    • Knight, K.L.1    Aoki, K.H.2    Ujita, E.L.3    McEntee, K.4
  • 15
    • 0020030168 scopus 로고
    • Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli
    • EM Witkin, JO McCall, MR Volkert and IE Wermundsen (1982) Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli. Mol Gen Genet 185 43-50.
    • (1982) Mol Gen Genet , vol.185 , pp. 43-50
    • Witkin, E.M.1    McCall, J.O.2    Volkert, M.R.3    Wermundsen, I.E.4
  • 16
    • 0020416355 scopus 로고
    • Regulation and autoregulation by lexA protein
    • R Brent (1982) Regulation and autoregulation by lexA protein. Biochimie 64 565-569.
    • (1982) Biochimie , vol.64 , pp. 565-569
    • Brent, R.1
  • 17
    • 0019979843 scopus 로고
    • LexA protein inhibits transcription of the E. coli uvrA gene in vitro
    • A Sancar, GB Sancar, WD Rupp, et al. (1982) LexA protein inhibits transcription of the E. coli uvrA gene in vitro. Nat (London) 298 96-98.
    • (1982) Nat (London) , vol.298 , pp. 96-98
    • Sancar, A.1    Sancar, G.B.2    Rupp, W.D.3
  • 18
    • 0020109070 scopus 로고
    • The uvrB gene of Escherichia coli has both lexA-repressed and lexA-independent promoters
    • GB Sancar, A Sancar, JW Little and WD Rupp (1982) The uvrB gene of Escherichia coli has both lexA-repressed and lexA-independent promoters. Cell 28 523-530.
    • (1982) Cell , vol.28 , pp. 523-530
    • Sancar, G.B.1    Sancar, A.2    Little, J.W.3    Rupp, W.D.4
  • 21
    • 0023883295 scopus 로고
    • Isolation and characterization of noncleavable (Ind-) mutants of the LexA repressor of Escherichia coli K-12
    • LL Lin and JW Little (1988) Isolation and characterization of noncleavable (Ind-) mutants of the LexA repressor of Escherichia coli K-12. J Bacteriol 170 2163-2173.
    • (1988) J Bacteriol , vol.170 , pp. 2163-2173
    • Lin, L.L.1    Little, J.W.2
  • 22
    • 0015427543 scopus 로고
    • Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations
    • DW Mount, KB Low and S Edmiston (1972) Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations. J Bacteriol 112 886-893.
    • (1972) J Bacteriol , vol.112 , pp. 886-893
    • Mount, D.W.1    Low, K.B.2    Edmiston, S.3
  • 23
    • 0038401982 scopus 로고    scopus 로고
    • Identification of additional genes belonging to the LexA regulon in Escherichia coli
    • AR Fernandez De Henestrosa, T Ogi, et al. (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35 1560-1572.
    • (2000) Mol Microbiol , vol.35 , pp. 1560-1572
    • Fernandez De Henestrosa, A.R.1    Ogi, T.2
  • 24
    • 0035823008 scopus 로고    scopus 로고
    • Crystal structure of LexA: A conformational switch for regulation of self-cleavage
    • Y Luo, RA Pfuetzner, S Mosimann, et al. (2001) Crystal structure of LexA: A conformational switch for regulation of self-cleavage. Mol Cell 106 585-594.
    • (2001) Mol Cell , vol.106 , pp. 585-594
    • Luo, Y.1    Pfuetzner, R.A.2    Mosimann, S.3
  • 25
    • 0019847880 scopus 로고
    • Regulation of SOS functions: Purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein
    • T Horii, T Ogawa, T Nakatani, et al. (1981) Regulation of SOS functions: Purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein. Cell 27 515-522.
    • (1981) Cell , vol.27 , pp. 515-522
    • Horii, T.1    Ogawa, T.2    Nakatani, T.3
  • 26
    • 0025361131 scopus 로고
    • Nature of the SOS-inducing signal in Escherichia coli: The involvement of DNA replication
    • M Sassanfar and JW Roberts (1990) Nature of the SOS-inducing signal in Escherichia coli: The involvement of DNA replication. J Mol Biol 212 79-96.
    • (1990) J Mol Biol , vol.212 , pp. 79-96
    • Sassanfar, M.1    Roberts, J.W.2
  • 27
    • 0022701392 scopus 로고
    • In vitro binding of LexA repressor to DNA: Evidence for the involvement of the amino-terminal domain
    • S Hurstel, M Granger-Schnarr, M Daune and M Schnarr (1986) In vitro binding of LexA repressor to DNA: Evidence for the involvement of the amino-terminal domain. EMBO J 5 793-798.
    • (1986) EMBO J , vol.5 , pp. 793-798
    • Hurstel, S.1    Granger-Schnarr, M.2    Daune, M.3    Schnarr, M.4
  • 28
    • 0037740010 scopus 로고    scopus 로고
    • Latent ClpX-recognition signals ensure LexA destruction after DNA damage
    • SB Neher, JM Flynn, RT Sauer and TA Baker (2003) Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev 17 1084-1089.
    • (2003) Genes Dev , vol.17 , pp. 1084-1089
    • Neher, S.B.1    Flynn, J.M.2    Sauer, R.T.3    Baker, T.A.4
  • 29
    • 0034786045 scopus 로고    scopus 로고
    • To cleave or not to cleave? Insights from the LexA crystal structure
    • GC Walker (2001) To cleave or not to cleave? Insights from the LexA crystal structure. Mol Cell 8 486-487.
    • (2001) Mol Cell , vol.8 , pp. 486-487
    • Walker, G.C.1
  • 30
    • 0024832465 scopus 로고
    • Autodigestion and RecA-dependent cleavage of Ind-mutant LexA proteins
    • L Lin and JW Little (1989) Autodigestion and RecA-dependent cleavage of Ind-mutant LexA proteins. J Mol Biol 210 439-452.
    • (1989) J Mol Biol , vol.210 , pp. 439-452
    • Lin, L.1    Little, J.W.2
  • 31
    • 0031054098 scopus 로고    scopus 로고
    • Preferential interactions of the Escherichia coli LexA repressor with anions and protons are coupled to binding the recA operator
    • NK Relan, ES Jenuwine, OH Gumbs and SL Shaner (1997) Preferential interactions of the Escherichia coli LexA repressor with anions and protons are coupled to binding the recA operator. Biochemistry 36 1077-1084.
    • (1997) Biochemistry , vol.36 , pp. 1077-1084
    • Relan, N.K.1    Jenuwine, E.S.2    Gumbs, O.H.3    Shaner, S.L.4
  • 32
    • 0025327383 scopus 로고
    • Reaction of LexA repressor with diisopropylfluorophosphate: A test of the serine protease model
    • KL Roland and JW Little (1990) Reaction of LexA repressor with diisopropylfluorophosphate: a test of the serine protease model. J Biol Chem 265 12,828-12,835.
    • (1990) J Biol Chem , vol.265 , pp. 12,828-12,835
    • Roland, K.L.1    Little, J.W.2
  • 33
    • 0026620486 scopus 로고
    • In vitro analysis of mutant LexA proteins with an increased rate of specific cleavage
    • KL Roland, MH Smith, JA Rupley and JW Little (1992) In vitro analysis of mutant LexA proteins with an increased rate of specific cleavage. J Mol Biol 228 395-408.
    • (1992) J Mol Biol , vol.228 , pp. 395-408
    • Roland, K.L.1    Smith, M.H.2    Rupley, J.A.3    Little, J.W.4
  • 34
    • 0025915719 scopus 로고
    • Mutant LexA proteins with an increased rate of in vivo cleavage
    • M Smith, MM Cavenaugh and JW Little (1991) Mutant LexA proteins with an increased rate of in vivo cleavage. Proc Natl Acad Sci U S A 88 7356-7360.
    • (1991) Proc Natl Acad Sci U S A , vol.88 , pp. 7356-7360
    • Smith, M.1    Cavenaugh, M.M.2    Little, J.W.3
  • 35
    • 0031297971 scopus 로고    scopus 로고
    • Dimerization of the UmuD′ protein in solution and its implications for regulation of SOS mutagenesis
    • AE Ferentz, T Opperman, GC Walker and G Wagner (1997) Dimerization of the UmuD′ protein in solution and its implications for regulation of SOS mutagenesis. Nat Struct Biol 4 979-983.
    • (1997) Nat Struct Biol , vol.4 , pp. 979-983
    • Ferentz, A.E.1    Opperman, T.2    Walker, G.C.3    Wagner, G.4
  • 36
    • 0029867923 scopus 로고    scopus 로고
    • Structure of the UmuD′ protein and its regulation in response to DNA damage
    • TS Peat, EG Frank, JP McDonald, et al. (1996) Structure of the UmuD′ protein and its regulation in response to DNA damage. Nature 380 727-730.
    • (1996) Nature , vol.380 , pp. 727-730
    • Peat, T.S.1    Frank, E.G.2    McDonald, J.P.3
  • 37
    • 0036012797 scopus 로고    scopus 로고
    • 2 protein
    • MD Sutton, A Guzzo, I Narumi, et al. (2002) A model for the structure of the Escherichia coli SOS-regulated UmuD2 protein. DNA Repair (Amst) 1 77-93.
    • (2002) DNA Repair (Amst) , vol.1 , pp. 77-93
    • Sutton, M.D.1    Guzzo, A.2    Narumi, I.3
  • 39
    • 0024121565 scopus 로고
    • UmuD mutagenesis protein of Escherichia coli: Overproduction, purification, and cleavage by RecA
    • SE Burckhardt, R Woodgate, RH Scheuermann and H Echols (1988) UmuD mutagenesis protein of Escherichia coli: Overproduction, purification, and cleavage by RecA. Proc Natl Acad Sci U S A 85 1811-1815.
    • (1988) Proc Natl Acad Sci U S A , vol.85 , pp. 1811-1815
    • Burckhardt, S.E.1    Woodgate, R.2    Scheuermann, R.H.3    Echols, H.4
  • 40
    • 0024121627 scopus 로고
    • RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis
    • H Shinagawa, H Iwasaki, T Kato and A Nakata (1988) RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci U S A 85 1806-1810.
    • (1988) Proc Natl Acad Sci U S A , vol.85 , pp. 1806-1810
    • Shinagawa, H.1    Iwasaki, H.2    Kato, T.3    Nakata, A.4
  • 41
    • 33646906556 scopus 로고    scopus 로고
    • A non-cleavable UmuD variant that acts as a UmuD′ mimic
    • PJ Beuning, SM Simon, A Zemla, et al. (2006) A non-cleavable UmuD variant that acts as a UmuD′ mimic. J Biol Chem 281 9633-9640.
    • (2006) J Biol Chem , vol.281 , pp. 9633-9640
    • Beuning, P.J.1    Simon, S.M.2    Zemla, A.3
  • 43
    • 39549118689 scopus 로고    scopus 로고
    • Regulation of Escherichia coli SOS mutagenesis by dimeric intrinsically disordered umuD gene products
    • SM Simon, FJ Sousa, R Mohana-Borges and GC Walker (2008) Regulation of Escherichia coli SOS mutagenesis by dimeric intrinsically disordered umuD gene products. Proc Natl Acad Sci U S A 105 1152-1157.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 1152-1157
    • Simon, S.M.1    Sousa, F.J.2    Mohana-Borges, R.3    Walker, G.C.4
  • 44
    • 0035045440 scopus 로고    scopus 로고
    • Genetic interactions between the Escherichia coli umuDC gene products and the beta processivity clamp of the replicative DNA polymerase
    • MD Sutton, MF Farrow, BM Burton and GC Walker (2001) Genetic interactions between the Escherichia coli umuDC gene products and the beta processivity clamp of the replicative DNA polymerase. J Bacteriol 183 2897-2909.
    • (2001) J Bacteriol , vol.183 , pp. 2897-2909
    • Sutton, M.D.1    Farrow, M.F.2    Burton, B.M.3    Walker, G.C.4
  • 45
    • 0033607172 scopus 로고    scopus 로고
    • The Escherichia coli SOS mutagenesis proteins UmuD and UmuD′ interact physically with the replicative DNA polymerase
    • MD Sutton, T Opperman and GC Walker (1999) The Escherichia coli SOS mutagenesis proteins UmuD and UmuD′ interact physically with the replicative DNA polymerase. Proc Natl Acad Sci USA 96 12,373-12,378.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 12,373-12,378
    • Sutton, M.D.1    Opperman, T.2    Walker, G.C.3
  • 46
    • 2542472534 scopus 로고
    • UmuC mutagenesis protein of Escherichia coli: Purification and interaction with UmuD and UmuD′
    • R Woodgate, M Rajagopalan, C Lu and H Echols (1989) UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD′. Proc Natl Acad Sci U S A 86 7301-7305.
    • (1989) Proc Natl Acad Sci U S A , vol.86 , pp. 7301-7305
    • Woodgate, R.1    Rajagopalan, M.2    Lu, C.3    Echols, H.4
  • 47
    • 37349132340 scopus 로고    scopus 로고
    • UmuD and RecA Directly Modulate the Mutagenic Potential of the Y Family DNA Polymerase DinB
    • VG Godoy, DF Jarosz, SM Simon, et al. (2007) UmuD and RecA Directly Modulate the Mutagenic Potential of the Y Family DNA Polymerase DinB. Mol Cell 28 1058-1070.
    • (2007) Mol Cell , vol.28 , pp. 1058-1070
    • Godoy, V.G.1    Jarosz, D.F.2    Simon, S.M.3
  • 48
    • 0024121518 scopus 로고
    • RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation
    • T Nohmi, JR Battista, LA Dodson and GC Walker (1988) RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci U S A 85 1816-1820.
    • (1988) Proc Natl Acad Sci U S A , vol.85 , pp. 1816-1820
    • Nohmi, T.1    Battista, J.R.2    Dodson, L.A.3    Walker, G.C.4
  • 49
    • 33747862944 scopus 로고    scopus 로고
    • RecA acts in trans to allow replication of damaged DNA by DNA polymerase V
    • K Schlacher, MM Cox, R Woodgate and MF Goodman (2006) RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442 883-887.
    • (2006) Nature , vol.442 , pp. 883-887
    • Schlacher, K.1    Cox, M.M.2    Woodgate, R.3    Goodman, M.F.4
  • 50
    • 0037441480 scopus 로고    scopus 로고
    • Structural studies on MtRecA-nucleotide complexes: Insights into DNA and nucleotide binding and the structural signature of NTP recognition
    • S Datta, N Ganesh, NR Chandra, et al. (2003) Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 50 474-485.
    • (2003) Proteins , vol.50 , pp. 474-485
    • Datta, S.1    Ganesh, N.2    Chandra, N.R.3
  • 51
    • 0038153902 scopus 로고    scopus 로고
    • Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes
    • S Datta, R Krishna, N Ganesh, et al. (2003) Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes. J Bacteriol 185 4280-4284.
    • (2003) J Bacteriol , vol.185 , pp. 4280-4284
    • Datta, S.1    Krishna, R.2    Ganesh, N.3
  • 52
    • 0034671684 scopus 로고    scopus 로고
    • Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): Implications for decreased ATPase activity and molecular aggregation
    • S Datta, MM Prabu, MB Vaze, et al. (2000) Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res 28 4964-4973.
    • (2000) Nucleic Acids Res , vol.28 , pp. 4964-4973
    • Datta, S.1    Prabu, M.M.2    Vaze, M.B.3
  • 53
    • 0027322196 scopus 로고
    • Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast
    • RM Story, DK Bishop, N Kleckner and TA Steitz (1993) Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259 1892-1896.
    • (1993) Science , vol.259 , pp. 1892-1896
    • Story, R.M.1    Bishop, D.K.2    Kleckner, N.3    Steitz, T.A.4
  • 54
    • 0026500416 scopus 로고
    • The structure of the E. coli recA protein monomer and polymer
    • RM Story, IT Weber and TA Steitz (1992) The structure of the E. coli recA protein monomer and polymer. Nat (London) 355 318-325.
    • (1992) Nat (London) , vol.355 , pp. 318-325
    • Story, R.M.1    Weber, I.T.2    Steitz, T.A.3
  • 55
    • 44349162159 scopus 로고    scopus 로고
    • Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
    • Z Chen, H Yang and NP Pavletich (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453 489-494.
    • (2008) Nature , vol.453 , pp. 489-494
    • Chen, Z.1    Yang, H.2    Pavletich, N.P.3
  • 56
    • 0027255851 scopus 로고
    • The LexA repressor binds within the deep helical groove of the activated RecA filament
    • X Yu and EH Egelman (1993) The LexA repressor binds within the deep helical groove of the activated RecA filament. J Mol Biol 231 29-40.
    • (1993) J Mol Biol , vol.231 , pp. 29-40
    • Yu, X.1    Egelman, E.H.2
  • 57
    • 0026584599 scopus 로고
    • Structure of the RecA protein-ADP complex
    • RM Story and TA Steitz (1992) Structure of the RecA protein-ADP complex. Nat (London) 355 374-376.
    • (1992) Nat (London) , vol.355 , pp. 374-376
    • Story, R.M.1    Steitz, T.A.2
  • 58
    • 33744965295 scopus 로고    scopus 로고
    • Complementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis
    • JM Cox, SN Abbott, S Chitteni-Pattu, et al. (2006) Complementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis. J Biol Chem 281 12,968-12,975.
    • (2006) J Biol Chem , vol.281 , pp. 12,968-12,975
    • Cox, J.M.1    Abbott, S.N.2    Chitteni-Pattu, S.3
  • 59
    • 0027457534 scopus 로고
    • Inactivation of the recA protein by mutation of histidine 97 or lysine 248 at the subunit interface
    • TT Nguyen, KA Muench and FR Bryant (1993) Inactivation of the recA protein by mutation of histidine 97 or lysine 248 at the subunit interface. J Biol Chem 268 3107-3113.
    • (1993) J Biol Chem , vol.268 , pp. 3107-3113
    • Nguyen, T.T.1    Muench, K.A.2    Bryant, F.R.3
  • 60
    • 0028947467 scopus 로고
    • Analysis of the DNA binding site of Escherichia coli RecA protein
    • K Morimatsu and T Horii (1995) Analysis of the DNA binding site of Escherichia coli RecA protein. Adv Biophys 31 23-48.
    • (1995) Adv Biophys , vol.31 , pp. 23-48
    • Morimatsu, K.1    Horii, T.2
  • 61
    • 0033582679 scopus 로고    scopus 로고
    • Toxic mutations in the recA gene of E. coli prevent proper chromosome segregation
    • MJ Campbell and RW Davis (1999) Toxic mutations in the recA gene of E. coli prevent proper chromosome segregation. J Mol Biol 286 417-435.
    • (1999) J Mol Biol , vol.286 , pp. 417-435
    • Campbell, M.J.1    Davis, R.W.2
  • 62
    • 0037126613 scopus 로고    scopus 로고
    • The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA
    • JM Bork, MM Cox and RB Inman (2001) The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. Embo J 20 7313-7322.
    • (2001) Embo J , vol.20 , pp. 7313-7322
    • Bork, J.M.1    Cox, M.M.2    Inman, R.B.3
  • 63
    • 0023135142 scopus 로고
    • Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA
    • SC Kowalczykowski and RA Krupp (1987) Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J Mol Biol 193 97-113.
    • (1987) J Mol Biol , vol.193 , pp. 97-113
    • Kowalczykowski, S.C.1    Krupp, R.A.2
  • 64
    • 0025240670 scopus 로고
    • Properties of recA441 protein-catalyzed DNA strand exchange can be attributed to an enhanced ability to compete with SSB protein
    • PE Lavery and SC Kowalczykowski (1990) Properties of recA441 protein-catalyzed DNA strand exchange can be attributed to an enhanced ability to compete with SSB protein. J Biol Chem 265 4004-4010.
    • (1990) J Biol Chem , vol.265 , pp. 4004-4010
    • Lavery, P.E.1    Kowalczykowski, S.C.2
  • 65
    • 0031556955 scopus 로고    scopus 로고
    • RecA protein filaments: End-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins
    • Q Shan, JM Bork, BL Webb, et al. (1997) RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265 519-540.
    • (1997) J Mol Biol , vol.265 , pp. 519-540
    • Shan, Q.1    Bork, J.M.2    Webb, B.L.3
  • 66
    • 0027238208 scopus 로고
    • Biochemical interactions of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded binding protein
    • K Umezu, N-W Chi and RD Kolodner (1993) Biochemical interactions of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded binding protein. Proc Natl Acad Sci U S A 90 3875-3879.
    • (1993) Proc Natl Acad Sci U S A , vol.90 , pp. 3875-3879
    • Umezu, K.1    Chi, N.-W.2    Kolodner, R.D.3
  • 67
    • 0028034452 scopus 로고
    • Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein
    • K Umezu and RD Kolodner (1994) Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem 269 30,005-30,013.
    • (1994) J Biol Chem , vol.269 , pp. 30,005-30,013
    • Umezu, K.1    Kolodner, R.D.2
  • 68
    • 0032101713 scopus 로고    scopus 로고
    • Inhibition of Escherichia coli RecA coprotease activities by DinI
    • T Yasuda, K Morimatsu, T Horii, et al. (1998) Inhibition of Escherichia coli RecA coprotease activities by DinI. EMBO J 17 3207-3216.
    • (1998) EMBO J , vol.17 , pp. 3207-3216
    • Yasuda, T.1    Morimatsu, K.2    Horii, T.3
  • 69
    • 0035283191 scopus 로고    scopus 로고
    • Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis
    • T Yasuda, K Morimatsu, R Kato, et al. (2001) Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis. Embo J 20 1192-1202.
    • (2001) Embo J , vol.20 , pp. 1192-1202
    • Yasuda, T.1    Morimatsu, K.2    Kato, R.3
  • 70
    • 0029997791 scopus 로고    scopus 로고
    • Multicopy suppressors of the cold-sensitive phenotype of the pcsA68 (dinD68) mutation in Echerichia coli
    • T Yasuda, T Nagata and H Ohmori (1996) Multicopy suppressors of the cold-sensitive phenotype of the pcsA68 (dinD68) mutation in Echerichia coli. J Bacteriol 178 3854-3859.
    • (1996) J Bacteriol , vol.178 , pp. 3854-3859
    • Yasuda, T.1    Nagata, T.2    Ohmori, H.3
  • 71
    • 4444296852 scopus 로고    scopus 로고
    • A RecA filament capping mechanism for RecX protein
    • JC Drees, SL Lusetti, S Chitteni-Pattu, et al. (2004) A RecA filament capping mechanism for RecX protein. Mol Cell 15 789-798.
    • (2004) Mol Cell , vol.15 , pp. 789-798
    • Drees, J.C.1    Lusetti, S.L.2    Chitteni-Pattu, S.3
  • 72
    • 11144222919 scopus 로고    scopus 로고
    • Inhibition of RecA protein by the Escherichia coli RecX protein: Modulation by the RecA C-terminus and filament functional state
    • JC Drees, SL Lusetti and MM Cox (2004) Inhibition of RecA protein by the Escherichia coli RecX protein: Modulation by the RecA C-terminus and filament functional state. J Biol Chem 279 52,991-52,997.
    • (2004) J Biol Chem , vol.279 , pp. 52,991-52,997
    • Drees, J.C.1    Lusetti, S.L.2    Cox, M.M.3
  • 73
    • 0141757508 scopus 로고    scopus 로고
    • Complexes of RecA with LexA and RecX differentiate between active and inactive RecA nucleoprotein filaments
    • MS VanLoock, X Yu, S Yang, et al. (2003) Complexes of RecA with LexA and RecX differentiate between active and inactive RecA nucleoprotein filaments. J Mol Biol 333 345-354.
    • (2003) J Mol Biol , vol.333 , pp. 345-354
    • VanLoock, M.S.1    Yu, X.2    Yang, S.3
  • 74
    • 0027984798 scopus 로고
    • Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli
    • LK Lewis, GR Harlow, LA Gregg-Jolly and DW Mount (1994) Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J Mol Biol 241 507-523.
    • (1994) J Mol Biol , vol.241 , pp. 507-523
    • Lewis, L.K.1    Harlow, G.R.2    Gregg-Jolly, L.A.3    Mount, D.W.4
  • 75
    • 0035112201 scopus 로고    scopus 로고
    • A model for the abrogation of the SOS response by an SOS protein: A negatively charged helix in DinI mimics DNA in its interaction with RecA
    • ON Voloshin, BE Ramirez, A Bax and RD Camerini-Otero (2001) A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev 15 415-427.
    • (2001) Genes Dev , vol.15 , pp. 415-427
    • Voloshin, O.N.1    Ramirez, B.E.2    Bax, A.3    Camerini-Otero, R.D.4
  • 76
    • 33845689742 scopus 로고    scopus 로고
    • DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12
    • N Renzette, N Gumlaw and SJ Sandler (2007) DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12. Mol Microbiol 63 103-115.
    • (2007) Mol Microbiol , vol.63 , pp. 103-115
    • Renzette, N.1    Gumlaw, N.2    Sandler, S.J.3
  • 77
    • 0021361022 scopus 로고
    • Regulation of cell division in Escherichia coli: SOS induction and cellular location of the sulA protein, a key to lon-associated filamentation and death
    • JM Schoemaker, RC Gayda and A Markovitz (1984) Regulation of cell division in Escherichia coli: SOS induction and cellular location of the sulA protein, a key to lon-associated filamentation and death. J Bacteriol 158 551-561.
    • (1984) J Bacteriol , vol.158 , pp. 551-561
    • Schoemaker, J.M.1    Gayda, R.C.2    Markovitz, A.3
  • 78
    • 0032535038 scopus 로고    scopus 로고
    • Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: In vitro degradation and identification of residues required for proteolysis
    • M Gonzalez, EG Frank, AS Levine and R Woodgate (1998) Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: in vitro degradation and identification of residues required for proteolysis. Genes Dev 12 3889-3899.
    • (1998) Genes Dev , vol.12 , pp. 3889-3899
    • Gonzalez, M.1    Frank, E.G.2    Levine, A.S.3    Woodgate, R.4
  • 79
    • 0022639493 scopus 로고
    • Reversibility of SOS-associated division inhibition in Escherichia coli
    • E Maguin, J Lutkenhaus and R D’Ari (1986) Reversibility of SOS-associated division inhibition in Escherichia coli. J Bacteriol 166 733-738.
    • (1986) J Bacteriol , vol.166 , pp. 733-738
    • Maguin, E.1    Lutkenhaus, J.2    D’Ari, R.3
  • 80
    • 33646021005 scopus 로고    scopus 로고
    • Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon
    • SB Neher, J Villen, EC Oakes, et al. (2006) Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol Cell 22 193-204.
    • (2006) Mol Cell , vol.22 , pp. 193-204
    • Neher, S.B.1    Villen, J.2    Oakes, E.C.3
  • 82
    • 0345687188 scopus 로고    scopus 로고
    • Distinct peptide signals in the UmuD and UmuD′ subunits of UmuD/D′ mediate tethering and substrate processing by the ClpXP protease
    • SB Neher, RT Sauer and TA Baker (2003) Distinct peptide signals in the UmuD and UmuD′ subunits of UmuD/D′ mediate tethering and substrate processing by the ClpXP protease. Proc Natl Acad Sci U S A 100 13,219-13,224.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 13,219-13,224
    • Neher, S.B.1    Sauer, R.T.2    Baker, T.A.3
  • 83
    • 0031859259 scopus 로고    scopus 로고
    • Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein
    • D Trusca, S Scott, C Thompson and D Bramhill (1998) Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J Bacteriol 180 3946-3953.
    • (1998) J Bacteriol , vol.180 , pp. 3946-3953
    • Trusca, D.1    Scott, S.2    Thompson, C.3    Bramhill, D.4
  • 84
    • 53849083443 scopus 로고    scopus 로고
    • Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork progression and is lethal
    • K Uchida, A Furukohri, Y Shinozaki, et al. (2008) Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork progression and is lethal. Mol Microbiol 70 608-622.
    • (2008) Mol Microbiol , vol.70 , pp. 608-622
    • Uchida, K.1    Furukohri, A.2    Shinozaki, Y.3
  • 85
    • 0027513320 scopus 로고
    • Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring
    • E Bi and J Lutkenhaus (1993) Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol 175 1118-1125.
    • (1993) J Bacteriol , vol.175 , pp. 1118-1125
    • Bi, E.1    Lutkenhaus, J.2
  • 86
    • 0038610624 scopus 로고    scopus 로고
    • Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ
    • SC Cordell, EJ Robinson and J Lowe (2003) Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci U S A 100 7889-7894.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 7889-7894
    • Cordell, S.C.1    Robinson, E.J.2    Lowe, J.3
  • 87
    • 7644219685 scopus 로고    scopus 로고
    • Bacterial cell division and the septal ring
    • DS Weiss (2004) Bacterial cell division and the septal ring. Mol Microbiol 54 588-597.
    • (2004) Mol Microbiol , vol.54 , pp. 588-597
    • Weiss, D.S.1
  • 88
    • 11844269468 scopus 로고
    • Analysis of a Gene Controlling Cell Division and Sensitivity to Radiation in Escherichia Coli
    • HI Adler and AA Hardigree (1964) Analysis of a Gene Controlling Cell Division and Sensitivity to Radiation in Escherichia Coli. J Bacteriol 87 720-726.
    • (1964) J Bacteriol , vol.87 , pp. 720-726
    • Adler, H.I.1    Hardigree, A.A.2
  • 89
    • 0025902278 scopus 로고
    • New mutations in cloned Escherichia coli umuDC genes: Novel phenotypes of strains carrying a umuC125 plasmid
    • L Marsh, T Nohmi, S Hinton and GC Walker (1991) New mutations in cloned Escherichia coli umuDC genes: Novel phenotypes of strains carrying a umuC125 plasmid. Mutat Res 250 183-197.
    • (1991) Mutat Res , vol.250 , pp. 183-197
    • Marsh, L.1    Nohmi, T.2    Hinton, S.3    Walker, G.C.4
  • 90
    • 0021960630 scopus 로고
    • Cold sensitivity induced by overproduction of UmuDC in Escherichia coli
    • L Marsh and GC Walker (1985) Cold sensitivity induced by overproduction of UmuDC in Escherichia coli. J Bacteriol 162 155-161.
    • (1985) J Bacteriol , vol.162 , pp. 155-161
    • Marsh, L.1    Walker, G.C.2
  • 91
    • 0029745671 scopus 로고    scopus 로고
    • The genetic requirements for UmuDC-mediated cold sensitivity are distinct from those for SOS mutagenesis
    • T Opperman, S Murli and GC Walker (1996) The genetic requirements for UmuDC-mediated cold sensitivity are distinct from those for SOS mutagenesis. J Bacteriol 178 4400-4411.
    • (1996) J Bacteriol , vol.178 , pp. 4400-4411
    • Opperman, T.1    Murli, S.2    Walker, G.C.3
  • 92
    • 0039577881 scopus 로고
    • DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli
    • CJ Kenyon and GC Walker (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci U S A 77 2819-2823.
    • (1980) Proc Natl Acad Sci U S A , vol.77 , pp. 2819-2823
    • Kenyon, C.J.1    Walker, G.C.2
  • 93
    • 0142062024 scopus 로고    scopus 로고
    • Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli
    • JC Layton and PL Foster (2003) Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli. Mol Microbiol 50 549-561.
    • (2003) Mol Microbiol , vol.50 , pp. 549-561
    • Layton, J.C.1    Foster, P.L.2
  • 94
    • 0034789619 scopus 로고    scopus 로고
    • Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli
    • SR Kim, K Matsui, M Yamada, et al. (2001) Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics 266 207-215.
    • (2001) Mol Genet Genomics , vol.266 , pp. 207-215
    • Kim, S.R.1    Matsui, K.2    Yamada, M.3
  • 95
    • 0021184799 scopus 로고
    • Monoclonal antibodies specific for the alpha subunit of the Escherichia coli DNA polymerase III holoenzyme
    • YH Wu Jr., MA Franden, JR Hawker and CS McHenry (1984) Monoclonal antibodies specific for the alpha subunit of the Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 259 12,117-12,122.
    • (1984) J Biol Chem , vol.259 , pp. 12,117-12,122
    • Wu, Y.H.1    Franden, M.A.2    Hawker, J.R.3    McHenry, C.S.4
  • 96
    • 45549085521 scopus 로고    scopus 로고
    • A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp
    • A Furukohri, MF Goodman and H Maki (2008) A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. J Biol Chem 283 11,260-11,269.
    • (2008) J Biol Chem , vol.283 , pp. 11,260-11,269
    • Furukohri, A.1    Goodman, M.F.2    Maki, H.3
  • 97
    • 0019450478 scopus 로고
    • Expression of the E. coli uvrA gene is inducible
    • CJ Kenyon and GC Walker (1981) Expression of the E. coli uvrA gene is inducible. Nat (London) 289 808-810.
    • (1981) Nat (London) , vol.289 , pp. 808-810
    • Kenyon, C.J.1    Walker, G.C.2
  • 98
    • 0023137057 scopus 로고
    • Promoter properties and negative regulation of the uvrA gene by the LexA repressor and its amino-terminal DNA binding domain
    • E Bertrand-Burggraf, S Hurstel, M Daune and M Schnarr (1987) Promoter properties and negative regulation of the uvrA gene by the LexA repressor and its amino-terminal DNA binding domain. J Mol Biol 193 293-302.
    • (1987) J Mol Biol , vol.193 , pp. 293-302
    • Bertrand-Burggraf, E.1    Hurstel, S.2    Daune, M.3    Schnarr, M.4
  • 99
    • 33847795537 scopus 로고    scopus 로고
    • Regulation of bacterial RecA protein function
    • MM Cox (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42 41-63.
    • (2007) Crit Rev Biochem Mol Biol , vol.42 , pp. 41-63
    • Cox, M.M.1
  • 100
    • 33750946025 scopus 로고    scopus 로고
    • Replication arrest-stimulated recombination: Dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB
    • ST Lovett (2006) Replication arrest-stimulated recombination: Dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB. DNA Repair (Amst) 5 1421-1427.
    • (2006) DNA Repair (Amst) , vol.5 , pp. 1421-1427
    • Lovett, S.T.1
  • 101
    • 0020536519 scopus 로고
    • Proteins required for ultraviolet light and chemical mutagenesis: Identification of the products of the umuC locus of Escherichia coli
    • SJ Elledge and GC Walker (1983) Proteins required for ultraviolet light and chemical mutagenesis: Identification of the products of the umuC locus of Escherichia coli. J Mol Biol 164 175-192.
    • (1983) J Mol Biol , vol.164 , pp. 175-192
    • Elledge, S.J.1    Walker, G.C.2
  • 102
    • 0020594344 scopus 로고
    • Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli
    • H Shinagawa, T Kato, T Ise, et al. (1983) Cloning and characterization of the umu operon responsible for inducible mutagenesis in Escherichia coli. Gene 23 167-174.
    • (1983) Gene , vol.23 , pp. 167-174
    • Shinagawa, H.1    Kato, T.2    Ise, T.3
  • 103
    • 0025815515 scopus 로고
    • Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage
    • R Woodgate and DG Ennis (1991) Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage. Mol Gen Genet 229 10-16.
    • (1991) Mol Gen Genet , vol.229 , pp. 10-16
    • Woodgate, R.1    Ennis, D.G.2
  • 104
    • 0015012109 scopus 로고
    • Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems
    • M Defais, P Fauquet, M Radman and M Errera (1971) Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology 43 495-503.
    • (1971) Virology , vol.43 , pp. 495-503
    • Defais, M.1    Fauquet, P.2    Radman, M.3    Errera, M.4
  • 105
    • 0017743308 scopus 로고
    • Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light
    • T Kato and Y Shinoura (1977) Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet 156 121-131.
    • (1977) Mol Gen Genet , vol.156 , pp. 121-131
    • Kato, T.1    Shinoura, Y.2
  • 106
    • 0018165062 scopus 로고
    • Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis
    • G Steinborn (1978) Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol Gen Genet 165 87-93.
    • (1978) Mol Gen Genet , vol.165 , pp. 87-93
    • Steinborn, G.1
  • 107
    • 0021320685 scopus 로고
    • Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli
    • GC Walker (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48 60-93.
    • (1984) Microbiol Rev , vol.48 , pp. 60-93
    • Walker, G.C.1
  • 108
    • 0001537072 scopus 로고
    • Induction of mutation in a bacterial virus
    • JJ Weigle (1953) Induction of mutation in a bacterial virus. Proc Natl Acad Sci U S A 39 628-636.
    • (1953) Proc Natl Acad Sci U S A , vol.39 , pp. 628-636
    • Weigle, J.J.1
  • 109
    • 0016229703 scopus 로고
    • Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B/r: Evidence that ultraviolet mutagenesis depends upon an inducible function
    • EM Witkin (1974) Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B/r: Evidence that ultraviolet mutagenesis depends upon an inducible function. Proc Natl Acad Sci U S A 71 1930-1934.
    • (1974) Proc Natl Acad Sci U S A , vol.71 , pp. 1930-1934
    • Witkin, E.M.1
  • 110
    • 0017037398 scopus 로고
    • Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli
    • EM Witkin (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40 869-907.
    • (1976) Bacteriol Rev , vol.40 , pp. 869-907
    • Witkin, E.M.1
  • 111
    • 0025043337 scopus 로고
    • Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis
    • JR Battista, T Ohta, T Nohmi, et al. (1990) Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis. Proc Natl Acad Sci U S A 87 7190-7194.
    • (1990) Proc Natl Acad Sci U S A , vol.87 , pp. 7190-7194
    • Battista, J.R.1    Ohta, T.2    Nohmi, T.3
  • 112
    • 0029076396 scopus 로고
    • DNA polymerase beta can substitute for DNA polymerase I in the initiation of plasmid DNA replication
    • JB Sweasy, M Chen and LA Loeb (1995) DNA polymerase beta can substitute for DNA polymerase I in the initiation of plasmid DNA replication. J Bacteriol 177 2923-2925.
    • (1995) J Bacteriol , vol.177 , pp. 2923-2925
    • Sweasy, J.B.1    Chen, M.2    Loeb, L.A.3
  • 113
    • 13944270317 scopus 로고    scopus 로고
    • DNA polymerase V and RecA protein, a minimal mutasome
    • K Schlacher, K Leslie, C Wyman, et al. (2005) DNA polymerase V and RecA protein, a minimal mutasome. Mol Cell 17 561-572.
    • (2005) Mol Cell , vol.17 , pp. 561-572
    • Schlacher, K.1    Leslie, K.2    Wyman, C.3
  • 114
    • 0037143704 scopus 로고    scopus 로고
    • Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis
    • P Pham, EM Seitz, S Saveliev, et al. (2002) Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis. Proc Natl Acad Sci U S A 99 11,061-11,066.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 11,061-11,066
    • Pham, P.1    Seitz, E.M.2    Saveliev, S.3
  • 115
    • 30544445218 scopus 로고    scopus 로고
    • A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates
    • DF Jarosz, VG Godoy, JC Delaney, et al. (2006) A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 439 225-228.
    • (2006) Nature , vol.439 , pp. 225-228
    • Jarosz, D.F.1    Godoy, V.G.2    Delaney, J.C.3
  • 116
    • 0000918686 scopus 로고    scopus 로고
    • The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis
    • J Wagner, P Gruz, SR Kim, et al. (1999) The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell 4 281-286.
    • (1999) Mol Cell , vol.4 , pp. 281-286
    • Wagner, J.1    Gruz, P.2    Kim, S.R.3
  • 117
    • 0022515733 scopus 로고
    • Role of RecA protein in untargeted UV mutagenesis of bacteriophage l: Evidence for the requirement for the dinB gene
    • A Brotcorne-Lannoye and G Maenhaut-Michel (1986) Role of RecA protein in untargeted UV mutagenesis of bacteriophage l: Evidence for the requirement for the dinB gene. Proc Natl Acad Sci U S A 83 3904-3908.
    • (1986) Proc Natl Acad Sci U S A , vol.83 , pp. 3904-3908
    • Brotcorne-Lannoye, A.1    Maenhaut-Michel, G.2
  • 118
    • 0035265678 scopus 로고    scopus 로고
    • SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification
    • GJ McKenzie, PL Lee, MJ Lombardo, et al. (2001) SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell 7 571-579.
    • (2001) Mol Cell , vol.7 , pp. 571-579
    • McKenzie, G.J.1    Lee, P.L.2    Lombardo, M.J.3
  • 119
    • 0026094779 scopus 로고
    • Adaptive reversion of a frameshift mutation in Escherichia coli
    • J Cairns and PL Foster (1991) Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128 695-701.
    • (1991) Genetics , vol.128 , pp. 695-701
    • Cairns, J.1    Foster, P.L.2
  • 120
    • 11944250947 scopus 로고
    • DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli
    • CA Bonner, S Hays, K McEntee and MF Goodman (1990) DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc Natl Acad Sci U S A 87 7663-7667.
    • (1990) Proc Natl Acad Sci U S A , vol.87 , pp. 7663-7667
    • Bonner, C.A.1    Hays, S.2    McEntee, K.3    Goodman, M.F.4
  • 121
    • 0030887046 scopus 로고    scopus 로고
    • The Escherichia coli polB locus is identical to dinA, the structural gene for DNA polymerase II. Characterization of Pol II purified from a polB mutant
    • Z Qiu and MF Goodman (1997) The Escherichia coli polB locus is identical to dinA, the structural gene for DNA polymerase II. Characterization of Pol II purified from a polB mutant. J Biol Chem 272 8611-8617.
    • (1997) J Biol Chem , vol.272 , pp. 8611-8617
    • Qiu, Z.1    Goodman, M.F.2
  • 122
    • 30944470236 scopus 로고    scopus 로고
    • Escherichia coli DNA polymerase II can efficiently bypass 3, N(4)-ethenocytosine lesions in vitro and in vivo
    • AA Al Mamun and MZ Humayun (2006) Escherichia coli DNA polymerase II can efficiently bypass 3, N(4)-ethenocytosine lesions in vitro and in vivo. Mutat Res 593 164-176.
    • (2006) Mutat Res , vol.593 , pp. 164-176
    • Al Mamun, A.A.1    Humayun, M.Z.2
  • 123
    • 0032953043 scopus 로고    scopus 로고
    • DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli
    • M Berardini, PL Foster and EL Loechler (1999) DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli. J Bacteriol 181 2878-2882.
    • (1999) J Bacteriol , vol.181 , pp. 2878-2882
    • Berardini, M.1    Foster, P.L.2    Loechler, E.L.3
  • 124
    • 0020021789 scopus 로고
    • Induction of E. coli recA protein via recBC and alternate pathways: Quantitation by enzyme-linked immunosorbent assay (ELISA)
    • AE Karu and ED Belk (1982) Induction of E. coli recA protein via recBC and alternate pathways: Quantitation by enzyme-linked immunosorbent assay (ELISA). Mol Gen Genet 185 275-282.
    • (1982) Mol Gen Genet , vol.185 , pp. 275-282
    • Karu, A.E.1    Belk, E.D.2
  • 125
    • 0037040198 scopus 로고    scopus 로고
    • Resolving a fidelity paradox: Why Escherichia coli DNA polymerase II makes more base substitution errors in AT- compared with GC-rich DNA
    • Z Wang, E Lazarov, M O’Donnell and MF Goodman (2002) Resolving a fidelity paradox: why Escherichia coli DNA polymerase II makes more base substitution errors in AT- compared with GC-rich DNA. J Biol Chem 277 4446-4454.
    • (2002) J Biol Chem , vol.277 , pp. 4446-4454
    • Wang, Z.1    Lazarov, E.2    O’Donnell, M.3    Goodman, M.F.4
  • 126
    • 0034669125 scopus 로고    scopus 로고
    • All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis
    • R Napolitano, R Janel-Bintz, J Wagner and RP Fuchs (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19 6259-6265.
    • (2000) EMBO J , vol.19 , pp. 6259-6265
    • Napolitano, R.1    Janel-Bintz, R.2    Wagner, J.3    Fuchs, R.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.