-
1
-
-
84868555271
-
-
International Diabetes Federation. 3rd ed; 2006. Brussels, Belgium: International Diabetes Federation. Accessed December 1
-
International Diabetes Federation. Diabetes Atlas. 3rd ed; 2006. Available at: http://www.diabetesatlas.org/sites. Brussels, Belgium: International Diabetes Federation. Accessed December 1, 2011.
-
(2011)
Diabetes Atlas
-
-
-
2
-
-
0031752685
-
Global burden of diabetes, 1995-2025: Prevalence, numerical estimates, and projections
-
King H, Aubert RE, Herman WH, et al. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414-1431.
-
(1998)
Diabetes Care
, vol.21
, pp. 1414-1431
-
-
King, H.1
Aubert, R.E.2
Herman, W.H.3
-
3
-
-
2342466734
-
Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030
-
Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047-1053.
-
(2004)
Diabetes Care
, vol.27
, pp. 1047-1053
-
-
Wild, S.1
Roglic, G.2
Green, A.3
-
4
-
-
73749083481
-
Global estimates of the prevalence of diabetes for 2010 and 2030
-
Shaw JE, Sicree RA, Zimmet PZ, et al. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4-14.
-
(2010)
Diabetes Res Clin Pract
, vol.87
, pp. 4-14
-
-
Shaw, J.E.1
Sicree, R.A.2
Zimmet, P.Z.3
-
5
-
-
79960614571
-
-
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. Atlanta, GA; 2008. Accessed July 12
-
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2007. Atlanta, GA; 2008. Available at: http://www.cdc.gov/diabetes/pubs/pdf/ndfs-2007. pdf. Accessed July 12, 2011.
-
(2011)
National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2007
-
-
-
6
-
-
79953244544
-
The diabetes epidemic: Addressing diagnostic and therapeutic challenges
-
McFarlane SI, Bahtiyar G. The diabetes epidemic: addressing diagnostic and therapeutic challenges. Therapy. 2011;8:103-104.
-
(2011)
Therapy
, vol.8
, pp. 103-104
-
-
McFarlane, S.I.1
Bahtiyar, G.2
-
7
-
-
0043244907
-
Economic costs of diabetes in the US in 2002
-
Hogan P, Dall T, Nikolov P, et al. Economic costs of diabetes in the US in 2002. Diabetes Care. 2003;26:917-932.
-
(2003)
Diabetes Care
, vol.26
, pp. 917-932
-
-
Hogan, P.1
Dall, T.2
Nikolov, P.3
-
8
-
-
77957232105
-
Incretin physiology and its role in type 2 diabetes mellitus
-
Svec F. Incretin physiology and its role in type 2 diabetes mellitus. J Am Osteopath Assoc. 2010;110(7 Suppl 7): eS20-eS24.
-
(2010)
J Am Osteopath Assoc
, vol.110
, Issue.7 SUPPL. 7
-
-
Svec, F.1
-
9
-
-
40449141248
-
Postprandial blood glucose in the management of type 2 diabetes: The emerging role of incretin mimetics
-
Kendall DM, Bergenstal RM. Postprandial blood glucose in the management of type 2 diabetes: the emerging role of incretin mimetics. Medscape Diabetes Endocrinol. 2005;7:2.
-
(2005)
Medscape Diabetes Endocrinol
, vol.7
, pp. 2
-
-
Kendall, D.M.1
Bergenstal, R.M.2
-
10
-
-
64649104158
-
Banting lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus
-
Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773-795.
-
(2009)
Diabetes
, vol.58
, pp. 773-795
-
-
Defronzo, R.A.1
-
11
-
-
27744541052
-
Exenatide augments first-and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes
-
Fehse F, Trautmann M, Holts JJ, et al. Exenatide augments first-and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2005;90:5991-5997.
-
(2005)
J Clin Endocrinol Metab
, vol.90
, pp. 5991-5997
-
-
Fehse, F.1
Trautmann, M.2
Holts, J.J.3
-
12
-
-
0002025725
-
On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane
-
Moore B. On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J. 1906; 1:28-38.
-
(1906)
Biochem J
, vol.1
, pp. 28-38
-
-
Moore, B.1
-
13
-
-
0002294149
-
New interpretation of oral glucose tolerance
-
McIntyre N, Holdsworth CD, Turner DS, et al. New interpretation of oral glucose tolerance. Lancet. 1964; 284:20-21.
-
(1964)
Lancet
, vol.284
, pp. 20-21
-
-
McIntyre, N.1
Holdsworth, C.D.2
Turner, D.S.3
-
14
-
-
67049155251
-
Unraveling the science of incretin biology
-
Nauck MA. Unraveling the science of incretin biology. Am J Med. 2009;122(6 Suppl):S3-S10.
-
(2009)
Am J Med
, vol.122
, Issue.6 SUPPL.
-
-
Nauck, M.A.1
-
15
-
-
0022617246
-
Reduced incretin effect in type 2 (non-insulin-dependent) diabetes
-
Nauck MA, Stöckmann F, Ebert R, et al. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29:46-52.
-
(1986)
Diabetologia
, vol.29
, pp. 46-52
-
-
Nauck, M.A.1
Stöckmann, F.2
Ebert, R.3
-
16
-
-
0033303516
-
Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine
-
Hansen L, Deacon CF, Orskov C, et al. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology. 1999;140:5356-5363.
-
(1999)
Endocrinology
, vol.140
, pp. 5356-5363
-
-
Hansen, L.1
Deacon, C.F.2
Orskov, C.3
-
17
-
-
0001095690
-
Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients
-
Vilsbøll T, Krarup T, Deacon S, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609-613.
-
(2001)
Diabetes
, vol.50
, pp. 609-613
-
-
Vilsbøll, T.1
Krarup, T.2
Deacon, S.3
-
18
-
-
0037241085
-
Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects
-
Vilsbøll T, Agersø H, Krarup T, et al. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003;88:220-224.
-
(2003)
J Clin Endocrinol Metab
, vol.88
, pp. 220-224
-
-
Vilsbøll, T.1
Agersø, H.2
Krarup, T.3
-
19
-
-
67049118921
-
Incretin therapies: Effects beyond glycemic control
-
Mudaliar S, Henry RR. Incretin therapies: effects beyond glycemic control. Am J Med. 2009;122(6 Suppl): S25-S36.
-
(2009)
Am J Med
, vol.122
, Issue.6 SUPPL.
-
-
Mudaliar, S.1
Henry, R.R.2
-
20
-
-
57149083860
-
The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions
-
Girard J. The incretins: from the concept to their use in the treatment of type 2 diabetes. Part A: incretins: concept and physiological functions. Diabetes Metab. 2008;34 (6 Pt 1):550-559.
-
(2008)
Diabetes Metab
, vol.34
, Issue.6 PART 1
, pp. 550-559
-
-
Girard, J.1
-
21
-
-
0035405821
-
Glucagon-like peptide-1 and exendin-4 stimulate β-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age
-
Tourrel C, Baibe D, Meile MJ, et al. Glucagon-like peptide-1 and exendin-4 stimulate β-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes. 2001;50:1562-1570.
-
(2001)
Diabetes
, vol.50
, pp. 1562-1570
-
-
Tourrel, C.1
Baibe, D.2
Meile, M.J.3
-
22
-
-
0037341252
-
Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat
-
Stoffers D, Desai B, DeLeon DD, et al. Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes. 2003; 52:734-740.
-
(2003)
Diabetes
, vol.52
, pp. 734-740
-
-
Stoffers, D.1
Desai, B.2
Deleon, D.D.3
-
23
-
-
0033513455
-
Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats
-
Xu G, Stoffers D, Habener JF, et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270-2276.
-
(1999)
Diabetes
, vol.48
, pp. 2270-2276
-
-
Xu, G.1
Stoffers, D.2
Habener, J.F.3
-
24
-
-
0032908809
-
Initiation of increased pancreatic islet growth in young normoglycemic mice (Umea +/?)
-
Edvell A, Lindstrom P. Initiation of increased pancreatic islet growth in young normoglycemic mice (Umea +/?). Endocrinology. 1999;140:778-783.
-
(1999)
Endocrinology
, vol.140
, pp. 778-783
-
-
Edvell, A.1
Lindstrom, P.2
-
25
-
-
0037339649
-
Development and characterization of a glucagon-like peptide 1-albumin conjugate: The ability to activate the glucagon-like peptide 1 receptor in vivo
-
Kim J, Baggio L, Bridon DP, et al. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes. 2003;52:751-759.
-
(2003)
Diabetes
, vol.52
, pp. 751-759
-
-
Kim, J.1
Baggio, L.2
Bridon, D.P.3
-
26
-
-
0034838323
-
Glucosedependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling
-
Trümper A, Trümper K, Trusheim H, et al. Glucosedependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol. 2001;15:1559-1570.
-
(2001)
Mol Endocrinol
, vol.15
, pp. 1559-1570
-
-
Trümper, A.1
Trümper, K.2
Trusheim, H.3
-
27
-
-
0037221488
-
Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor
-
Buteau J, Foisy S, Joly E, et al. Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes. 2003;52:124-132.
-
(2003)
Diabetes
, vol.52
, pp. 124-132
-
-
Buteau, J.1
Foisy, S.2
Joly, E.3
-
28
-
-
0032768616
-
Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDK-1) DNA binding activity in b (INS-1)-cells
-
Buteau J, Roduit R, Susini S, et al. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDK-1) DNA binding activity in b (INS-1)-cells. Diabetologia. 1999;42:856-864.
-
(1999)
Diabetologia
, vol.42
, pp. 856-864
-
-
Buteau, J.1
Roduit, R.2
Susini, S.3
-
29
-
-
0035489990
-
Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation
-
Buteau J, Foisy S, Rhodes CJ, et al. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation. Diabetes. 2001;50:2237-2243.
-
(2001)
Diabetes
, vol.50
, pp. 2237-2243
-
-
Buteau, J.1
Foisy, S.2
Rhodes, C.J.3
-
30
-
-
0036687655
-
Mechanisms of mitogenic and anti-apoptotic signaling by glucosedependent insulinotropic polypeptide in b(INS-1)-cells
-
Trümper A, Trümper K, Horsch D, et al. Mechanisms of mitogenic and anti-apoptotic signaling by glucosedependent insulinotropic polypeptide in b(INS-1)-cells. J Endocrinol. 2002;174:233-246.
-
(2002)
J Endocrinol
, vol.174
, pp. 233-246
-
-
Trümper, A.1
Trümper, K.2
Horsch, D.3
-
31
-
-
0037386156
-
Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A-and a phosphatidylinosiltol 3-kinase-dependent pathway
-
Hui H, Nourparvar A, Zhao X, et al. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A-and a phosphatidylinosiltol 3-kinase-dependent pathway. Endocrinology. 2003;144:1444-1455.
-
(2003)
Endocrinology
, vol.144
, pp. 1444-1455
-
-
Hui, H.1
Nourparvar, A.2
Zhao, X.3
-
32
-
-
2542479899
-
Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system
-
Brubaker PL, Drucker DJ. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology. 2004;145:2653-2659.
-
(2004)
Endocrinology
, vol.145
, pp. 2653-2659
-
-
Brubaker, P.L.1
Drucker, D.J.2
-
33
-
-
0035084164
-
Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells
-
Hui H, Wright C, Perfetti R, et al. Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes. 2001;50:785-796.
-
(2001)
Diabetes
, vol.50
, pp. 785-796
-
-
Hui, H.1
Wright, C.2
Perfetti, R.3
-
34
-
-
0036918960
-
Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1
-
Bulotta A, Hui H, et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol. 2002;29:347-360.
-
(2002)
J Mol Endocrinol
, vol.29
, pp. 347-360
-
-
Bulotta, A.1
Hui, H.2
-
35
-
-
0037312818
-
Glucagon-like peptides: Regulators of cell proliferation, differentiation, and apoptosis
-
Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003;17:161-171.
-
(2003)
Mol Endocrinol
, vol.17
, pp. 161-171
-
-
Drucker, D.J.1
-
36
-
-
0037414781
-
Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis
-
Li Y, Hansotia T, Yusta B, et al. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem. 2003;278:471-478.
-
(2003)
J Biol Chem
, vol.278
, pp. 471-478
-
-
Li, Y.1
Hansotia, T.2
Yusta, B.3
-
37
-
-
0345374580
-
Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets
-
Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149-5158.
-
(2003)
Endocrinology
, vol.144
, pp. 5149-5158
-
-
Farilla, L.1
Bulotta, A.2
Hirshberg, B.3
-
38
-
-
33644618433
-
The biology of incretin hormones
-
Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153-165.
-
(2006)
Cell Metab
, vol.3
, pp. 153-165
-
-
Drucker, D.J.1
-
39
-
-
77949273334
-
The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice
-
Hsieh J, Longuet C, Baker CL, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia. 2010;53:552-561.
-
(2010)
Diabetologia
, vol.53
, pp. 552-561
-
-
Hsieh, J.1
Longuet, C.2
Baker, C.L.3
-
40
-
-
0036068322
-
Inhibition of gastric inhibitory polypeptide signaling prevents obesity
-
Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8:738-742.
-
(2002)
Nat Med
, vol.8
, pp. 738-742
-
-
Miyawaki, K.1
Yamada, Y.2
Ban, N.3
-
41
-
-
77957259261
-
Glucagon-like peptide-1 receptor knockout mice are protected from highfat diet-induced insulin resistance
-
Ayala JE, Bracy DP, James FD, et al. Glucagon-like peptide-1 receptor knockout mice are protected from highfat diet-induced insulin resistance. Endocrinology. 2010; 151:4678-4687.
-
(2010)
Endocrinology
, vol.151
, pp. 4678-4687
-
-
Ayala, J.E.1
Bracy, D.P.2
James, F.D.3
-
42
-
-
70349308687
-
A new glucagon and GLP-1 co-agonist eliminates obesity in rodents
-
Day J, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5:749-757.
-
(2009)
Nat Chem Biol
, vol.5
, pp. 749-757
-
-
Day, J.1
Ottaway, N.2
Patterson, J.T.3
-
43
-
-
12144260853
-
Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury
-
Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146-151.
-
(2005)
Diabetes
, vol.54
, pp. 146-151
-
-
Bose, A.K.1
Mocanu, M.M.2
Carr, R.D.3
-
44
-
-
0037629509
-
Glucagonlike peptide-1 (7-36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium
-
Kavianipour M, Ehlers MR, Halberg K, et al. Glucagonlike peptide-1 (7-36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides. 2003;24: 569-578.
-
(2003)
Peptides
, vol.24
, pp. 569-578
-
-
Kavianipour, M.1
Ehlers, M.R.2
Halberg, K.3
-
45
-
-
33644682164
-
Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure
-
Thrainsdottir I, Malmberg K, Olsson A, et al. Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diabetes Vasc Dis Res. 2004;1:40-43.
-
(2004)
Diabetes Vasc Dis Res
, vol.1
, pp. 40-43
-
-
Thrainsdottir, I.1
Malmberg, K.2
Olsson, A.3
-
46
-
-
1442311383
-
Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion
-
Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962-965.
-
(2004)
Circulation
, vol.109
, pp. 962-965
-
-
Nikolaidis, L.A.1
Mankad, S.2
Sokos, G.G.3
-
47
-
-
8544258807
-
Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease
-
Nyström T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287:E1209-E1215.
-
(2004)
Am J Physiol Endocrinol Metab
, vol.287
-
-
Nyström, T.1
Gutniak, M.K.2
Zhang, Q.3
-
48
-
-
0032976939
-
Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients
-
Toft-Nielsen MB, Madsbad S, Holst JJ, et al. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care. 1999;22:1137-1143.
-
(1999)
Diabetes Care
, vol.22
, pp. 1137-1143
-
-
Toft-Nielsen, M.B.1
Madsbad, S.2
Holst, J.J.3
-
49
-
-
18144401971
-
Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes
-
DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28:1092-1100.
-
(2005)
Diabetes Care
, vol.28
, pp. 1092-1100
-
-
Defronzo, R.A.1
Ratner, R.E.2
Han, J.3
-
50
-
-
38549162147
-
Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years
-
Klonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin. 2008;24:275-286.
-
(2008)
Curr Med Res Opin
, vol.24
, pp. 275-286
-
-
Klonoff, D.C.1
Buse, J.B.2
Nielsen, L.L.3
-
51
-
-
51549095571
-
Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: A randomized, double-blind, placebo-controlled, parallel-group study
-
Moretto T, Milton D, Ridge TD, et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2008;30:1448-1460.
-
(2008)
Clin Ther
, vol.30
, pp. 1448-1460
-
-
Moretto, T.1
Milton, D.2
Ridge, T.D.3
-
52
-
-
67650066860
-
Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD)
-
Zinman B, Gerich J, Bose JB, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care. 2009;32:1224-1230.
-
(2009)
Diabetes Care
, vol.32
, pp. 1224-1230
-
-
Zinman, B.1
Gerich, J.2
Bose, J.B.3
-
53
-
-
41849099939
-
Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension
-
Mistry G, Maes A, Lasseter KC, et al. Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J Clin Pharmacol. 2008;48:592-598.
-
(2008)
J Clin Pharmacol
, vol.48
, pp. 592-598
-
-
Mistry, G.1
Maes, A.2
Lasseter, K.C.3
-
54
-
-
0036307872
-
Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons
-
Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002;110:43-52.
-
(2002)
J Clin Invest
, vol.110
, pp. 43-52
-
-
Yamamoto, H.1
Lee, C.E.2
Marcus, J.N.3
-
55
-
-
0028042205
-
Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats
-
Barragan J, Rodríguez R, Blazquez E, et al. Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats. Am J Physiol Endocrinol Metab. 1994;266:E459-E466.
-
(1994)
Am J Physiol Endocrinol Metab
, vol.266
-
-
Barragan, J.1
Rodríguez, R.2
Blazquez, E.3
-
56
-
-
0027533758
-
Truncated GLP-1 (proglucagon 78-107 amide) inhibits gastric and pancreatic functions in man
-
Wettergren A, Schojoldager B, Mortensen PE, et al. Truncated GLP-1 (proglucagon 78-107 amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993;38: 665-673.
-
(1993)
Dig Dis Sci
, vol.38
, pp. 665-673
-
-
Wettergren, A.1
Schojoldager, B.2
Mortensen, P.E.3
-
57
-
-
0033021677
-
Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men
-
Naslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord. 1999;23:304-311.
-
(1999)
Int J Obes Relat Metab Disord
, vol.23
, pp. 304-311
-
-
Naslund, E.1
Barkeling, B.2
King, N.3
-
58
-
-
38749123990
-
Gastric distention activates satiety circuitry in the human brain
-
Wang G, Tomasi D, Backus W, et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage. 2008;39:1824-1831.
-
(2008)
Neuroimage
, vol.39
, pp. 1824-1831
-
-
Wang, G.1
Tomasi, D.2
Backus, W.3
-
59
-
-
0036198285
-
Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier
-
Kastin A, Akerstrom V, Pan W, et al. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci. 2002;18:7-14.
-
(2002)
J Mol Neurosci
, vol.18
, pp. 7-14
-
-
Kastin, A.1
Akerstrom, V.2
Pan, W.3
-
60
-
-
34548444064
-
Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion
-
Smeets PA, Vidarsdottir S, de Graaf C, et al. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab. 2007;293:E754-758.
-
(2007)
Am J Physiol Endocrinol Metab
, vol.293
-
-
Smeets, P.A.1
Vidarsdottir, S.2
De Graaf, C.3
-
61
-
-
0141461415
-
Glucagon-like peptide-1 receptor is involved in learning and neuroprotection
-
During M, Cao L, Zuzga DS, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9:1173-1179.
-
(2003)
Nat Med
, vol.9
, pp. 1173-1179
-
-
During, M.1
Cao, L.2
Zuzga, D.S.3
-
62
-
-
0036721026
-
Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4
-
Perry T, Haughey NJ, Mattson MP, et al. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther. 2002;302: 881-888.
-
(2002)
J Pharmacol Exp Ther
, vol.302
, pp. 881-888
-
-
Perry, T.1
Haughey, N.J.2
Mattson, M.P.3
-
63
-
-
0038248960
-
Glucagon-like peptide-1 decreases endogenous amyloid-b peptide (Ab) levels and protects hippocampal neurons from death induced by Ab and iron
-
Perry T, Lahiri D, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-b peptide (Ab) levels and protects hippocampal neurons from death induced by Ab and iron. J Neurosci Res. 2003;72: 603-612.
-
(2003)
J Neurosci Res
, vol.72
, pp. 603-612
-
-
Perry, T.1
Lahiri, D.2
Sambamurti, K.3
-
64
-
-
0034880655
-
Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients
-
Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717-3723.
-
(2001)
J Clin Endocrinol Metab
, vol.86
, pp. 3717-3723
-
-
Toft-Nielsen, M.B.1
Damholt, M.B.2
Madsbad, S.3
-
65
-
-
33846006173
-
The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
-
Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696-1705.
-
(2006)
Lancet
, vol.368
, pp. 1696-1705
-
-
Drucker, D.J.1
Nauck, M.A.2
-
66
-
-
4344675057
-
Therapeutic strategies based on glucagonlike peptide 1
-
Deacon CF. Therapeutic strategies based on glucagonlike peptide 1. Diabetes. 2004;53:2181-2189.
-
(2004)
Diabetes
, vol.53
, pp. 2181-2189
-
-
Deacon, C.F.1
-
67
-
-
0036189831
-
The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men
-
Agersø H, Jensen LB, Elbrond B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45:195-202.
-
(2002)
Diabetologia
, vol.45
, pp. 195-202
-
-
Agersø, H.1
Jensen, L.B.2
Elbrond, B.3
-
68
-
-
0038353630
-
The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose
-
Chang AM, Jakobsen G, Sturis J, et al. The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose. Diabetes. 2003; 52:1786-1791.
-
(2003)
Diabetes
, vol.52
, pp. 1786-1791
-
-
Chang, A.M.1
Jakobsen, G.2
Sturis, J.3
-
69
-
-
59449101432
-
Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): A randomised, 52-week, phase III, double-blind, parallel-treatment trial
-
Garber A, Henry R, Ratner R, et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet. 2009;373:473-481.
-
(2009)
Lancet
, vol.373
, pp. 473-481
-
-
Garber, A.1
Henry, R.2
Ratner, R.3
-
70
-
-
62449129181
-
Liraglutide, a oncedaily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU)
-
Marre M, Shaw J, Brandle M, et al. Liraglutide, a oncedaily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabetic Med. 2009;26:268-278.
-
(2009)
Diabetic Med
, vol.26
, pp. 268-278
-
-
Marre, M.1
Shaw, J.2
Brandle, M.3
-
71
-
-
62449169287
-
Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: The LEAD (liraglutide effect and action in diabetes)-2 study
-
Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32:84-90.
-
(2009)
Diabetes Care
, vol.32
, pp. 84-90
-
-
Nauck, M.1
Frid, A.2
Hermansen, K.3
-
72
-
-
69949117621
-
Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): A randomised controlled trial
-
Russell-Jones D, Vaag A, Schintz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia. 2009;52:2046-2055.
-
(2009)
Diabetologia
, vol.52
, pp. 2046-2055
-
-
Russell-Jones, D.1
Vaag, A.2
Schintz, O.3
-
73
-
-
67649523294
-
Treatment with the human once-weekly glucagon-like peptide-1 analog taspoglutide in combination with metformin improves glycemic control and lowers body weight in patients with type 2 diabetes inadequately controlled with metformin alone: A double-blind placebo-controlled study
-
Nauck MA, Ratner RE, Kapitza C, et al. Treatment with the human once-weekly glucagon-like peptide-1 analog taspoglutide in combination with metformin improves glycemic control and lowers body weight in patients with type 2 diabetes inadequately controlled with metformin alone: a double-blind placebo-controlled study. Diabetes Care. 2009;32:1237-1243.
-
(2009)
Diabetes Care
, vol.32
, pp. 1237-1243
-
-
Nauck, M.A.1
Ratner, R.E.2
Kapitza, C.3
-
74
-
-
84880766976
-
BIM 51077, a stable glucagon-like peptide-1 (GLP-1) analogue with preserved gluco-incretin property in vitro
-
Denver, CO
-
Woon C, Taylor J, Dong JZ, et al. BIM 51077, a stable glucagon-like peptide-1 (GLP-1) analogue with preserved gluco-incretin property in vitro. Poster (Abstract P1-359) presented at the Proceedings of the Endocrine Society Meeting, Denver, CO; 2001.
-
(2001)
Poster (Abstract P1-359) Presented at the Proceedings of the Endocrine Society Meeting
-
-
Woon, C.1
Taylor, J.2
Dong, J.Z.3
-
75
-
-
77951293658
-
Taspoglutide, an analog of human glucagon-like Peptide-1 with enhanced stability and in vivo potency
-
Sebokova E, Christ AD, Wang H, et al. Taspoglutide, an analog of human glucagon-like Peptide-1 with enhanced stability and in vivo potency. Endocrinology. 2010;151: 2474-2482.
-
(2010)
Endocrinology
, vol.151
, pp. 2474-2482
-
-
Sebokova, E.1
Christ, A.D.2
Wang, H.3
-
76
-
-
0026648961
-
Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas
-
Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267:7402-7405.
-
(1992)
J Biol Chem
, vol.267
, pp. 7402-7405
-
-
Eng, J.1
Kleinman, W.A.2
Singh, L.3
-
77
-
-
77956581914
-
Incretin agents in type 2 diabetes
-
Ross SA, Ekoé JM. Incretin agents in type 2 diabetes. Can Fam Physician. 2010;56:639-648.
-
(2010)
Can Fam Physician
, vol.56
, pp. 639-648
-
-
Ross, S.A.1
Ekoé, J.M.2
-
78
-
-
0347360186
-
Pharmacology of exenatide (synthetic exendin-4): A potential therapeutic for improved glycemic control of type 2 diabetes
-
Nielsen LL, Young AA, Parkes DG, et al. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Pept. 2004;117:77-88.
-
(2004)
Regul Pept
, vol.117
, pp. 77-88
-
-
Nielsen, L.L.1
Young, A.A.2
Parkes, D.G.3
-
79
-
-
15444367142
-
Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus
-
Kolterman O, Kim DD, Shen L, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. 2005;62: 173-181.
-
(2005)
Am J Health Syst Pharm
, vol.62
, pp. 173-181
-
-
Kolterman, O.1
Kim, D.D.2
Shen, L.3
-
80
-
-
33947156808
-
Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes: An interim analysis of data from the open-label, uncontrolled extension of three doubleblind, placebo-controlled trials
-
Buse JB, Klonoff DC, Nielsen LL, et al. Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes: an interim analysis of data from the open-label, uncontrolled extension of three doubleblind, placebo-controlled trials. Clin Ther. 2007;29: 139-153.
-
(2007)
Clin Ther
, vol.29
, pp. 139-153
-
-
Buse, J.B.1
Klonoff, D.C.2
Nielsen, L.L.3
-
81
-
-
67649666737
-
Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6)
-
Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374:39-47.
-
(2009)
Lancet
, vol.374
, pp. 39-47
-
-
Buse, J.B.1
Rosenstock, J.2
Sesti, G.3
-
82
-
-
75149128665
-
Incretin-based therapies for the treatment of type 2 diabetes: Evaluation of the risks and benefits
-
Daniel DJ, Sherman SI, Gorelick FS, et al. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care. 2010;33:428-433.
-
(2010)
Diabetes Care
, vol.33
, pp. 428-433
-
-
Daniel, D.J.1
Sherman, S.I.2
Gorelick, F.S.3
|