메뉴 건너뛰기




Volumn 59, Issue 8, 2013, Pages 2761-2779

Multiway independent component analysis mixture model and mutual information based fault detection and diagnosis approach of multiphase batch processes

Author keywords

Fault detection; Fault diagnosis; Multiphase batch process; Multiway independent component analysis mixture model; Mutual information; Non Gaussian contribution index

Indexed keywords

CONTRIBUTION INDICES; FAULT DETECTION AND DIAGNOSIS; INDEPENDENT COMPONENT ANALYSIS MIXTURE MODEL; MULTIPHASE BATCH PROCESS; MULTIWAY PRINCIPAL COMPONENT ANALYSIS; MUTUAL INFORMATIONS; PENICILLIN FERMENTATION PROCESS; STATISTICAL DEPENDENCIES;

EID: 84880639505     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14051     Document Type: Article
Times cited : (34)

References (48)
  • 1
    • 0028546521 scopus 로고
    • Analysis of operating data for evaluation, diagnosis and control of batch operations
    • Bakshi BR, Locher G, Stephanopoulos G. Analysis of operating data for evaluation, diagnosis and control of batch operations. J Process Control. 1994;4:179-194.
    • (1994) J Process Control. , vol.4 , pp. 179-194
    • Bakshi, B.R.1    Locher, G.2    Stephanopoulos, G.3
  • 3
    • 0036628052 scopus 로고    scopus 로고
    • Statistical process monitoring based on dissimilarity of process data
    • Kano M, Hasebe S, Hashimoto I, Ohno H. Statistical process monitoring based on dissimilarity of process data. AIChE J. 2002;48: 1231-1240.
    • (2002) AIChE J. , vol.48 , pp. 1231-1240
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 4
    • 33645344085 scopus 로고    scopus 로고
    • Industrial experiences with multivariate statistical analysis of batch process data
    • Chiang LH, Leardi R, Pell RJ, Seasholtz MB. Industrial experiences with multivariate statistical analysis of batch process data. Chemom Intell Lab Syst. 2006;81:109-119.
    • (2006) Chemom Intell Lab Syst. , vol.81 , pp. 109-119
    • Chiang, L.H.1    Leardi, R.2    Pell, R.J.3    Seasholtz, M.B.4
  • 5
    • 40749104269 scopus 로고    scopus 로고
    • Statistical MIMO controller performance monitoring. Part I: data driven covariance benchmark
    • Yu J, Qin SJ. Statistical MIMO controller performance monitoring. Part I: data driven covariance benchmark. J Process Control. 2008;18:277-296.
    • (2008) J Process Control. , vol.18 , pp. 277-296
    • Yu, J.1    Qin, S.J.2
  • 6
    • 40849111817 scopus 로고    scopus 로고
    • Statistical MIMO controller performance monitoring. Part II: performance diagnosis
    • Yu J, Qin SJ. Statistical MIMO controller performance monitoring. Part II: performance diagnosis. J Process Control. 2008;18:297-319.
    • (2008) J Process Control. , vol.18 , pp. 297-319
    • Yu, J.1    Qin, S.J.2
  • 7
    • 70749091622 scopus 로고    scopus 로고
    • Variance component analysis based fault diagnosis of multi-layer overlay lithography processes
    • Yu J, Qin SJ. Variance component analysis based fault diagnosis of multi-layer overlay lithography processes. IIE Trans. 2009;41:764-775.
    • (2009) IIE Trans. , vol.41 , pp. 764-775
    • Yu, J.1    Qin, S.J.2
  • 8
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multiway independent component analysis
    • Yoo C, Lee JM, Vanrolleghem PA, Lee IB. On-line monitoring of batch processes using multiway independent component analysis. Chemom Intell Lab Syst. 2004;71:151-163.
    • (2004) Chemom Intell Lab Syst. , vol.71 , pp. 151-163
    • Yoo, C.1    Lee, J.M.2    Vanrolleghem, P.A.3    Lee, I.B.4
  • 9
    • 84859392648 scopus 로고    scopus 로고
    • A bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Computer Chem Eng. 2012;41:134-144.
    • (2012) Computer Chem Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 10
    • 0029712734 scopus 로고    scopus 로고
    • Monitoring bioprocesses using hybrid models and an extended kalman filter
    • Zorzetto L, Wilson J. Monitoring bioprocesses using hybrid models and an extended kalman filter. Comput Chem Eng. 1996;20:689-694.
    • (1996) Comput Chem Eng. , vol.20 , pp. 689-694
    • Zorzetto, L.1    Wilson, J.2
  • 11
    • 0010040681 scopus 로고
    • Multi-way principal components-and PLS-analysis
    • Wold S, Geladi P, Esbensen K, Öhman J. Multi-way principal components-and PLS-analysis. J Chemom. 1987;1:41-56.
    • (1987) J Chemom. , vol.1 , pp. 41-56
    • Wold, S.1    Geladi, P.2    Esbensen, K.3    Öhman, J.4
  • 12
    • 0028825273 scopus 로고
    • Multi-way partial least squares in monitoring batch processes
    • Nomikos P, MacGregor JF. Multi-way partial least squares in monitoring batch processes. Chemom Intell Lab Syst. 1995;30:97-108.
    • (1995) Chemom Intell Lab Syst. , vol.30 , pp. 97-108
    • Nomikos, P.1    MacGregor, J.F.2
  • 13
    • 0000080198 scopus 로고    scopus 로고
    • Improved process understanding using multiway principal component analysis
    • Kosanovich KA, Dahl KS, Piovoso MJ. Improved process understanding using multiway principal component analysis. Ind Eng Chem Res. 1996;35:138-146.
    • (1996) Ind Eng Chem Res. , vol.35 , pp. 138-146
    • Kosanovich, K.A.1    Dahl, K.S.2    Piovoso, M.J.3
  • 14
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise BM, Gallagher NB. The process chemometrics approach to process monitoring and fault detection. J Process Control. 1996;6: 329-348.
    • (1996) J Process Control. , vol.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 15
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin EB, Morris AJ. Non-parametric confidence bounds for process performance monitoring charts. J Process Control. 1996;6:349-358.
    • (1996) J Process Control. , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 16
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS models
    • Chen J, Liu KC. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem Eng Sci. 2002;57:63-75.
    • (2002) Chem Eng Sci. , vol.57 , pp. 63-75
    • Chen, J.1    Liu, K.C.2
  • 17
    • 0141566609 scopus 로고    scopus 로고
    • Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis
    • Ündey C, Ertunç S, Çinar A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Ind Eng Chem Res. 2003;42:4645-4658.
    • (2003) Ind Eng Chem Res. , vol.42 , pp. 4645-4658
    • Ündey, C.1    Ertunç, S.2    Çinar, A.3
  • 18
    • 0344944150 scopus 로고    scopus 로고
    • Dynamic multivariate statistical process control using subspace identification
    • Treasure R, Kruger U, Cooper J. Dynamic multivariate statistical process control using subspace identification. J Process Control. 2004;14:279-292.
    • (2004) J Process Control. , vol.14 , pp. 279-292
    • Treasure, R.1    Kruger, U.2    Cooper, J.3
  • 19
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee JM, Yoo C, Choi SW, Vanrolleghem PA, Lee IB. Nonlinear process monitoring using kernel principal component analysis. Chem Eng Sci. 2004;59:223-234.
    • (2004) Chem Eng Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 20
    • 57049095978 scopus 로고    scopus 로고
    • Unsupervised multiway data analysis: a literature survey
    • Acar E, Yener B. Unsupervised multiway data analysis: a literature survey. IEEE Trans Knowl Data Eng. 2009;21:6-20.
    • (2009) IEEE Trans Knowl Data Eng. , vol.21 , pp. 6-20
    • Acar, E.1    Yener, B.2
  • 21
    • 79953818960 scopus 로고    scopus 로고
    • A method for multiphase batch process monitoring based on auto phase identification
    • Sun W, Meng Y, Palazoglu A, Zhao J, Zhang H, Zhang J. A method for multiphase batch process monitoring based on auto phase identification. J Process Control. 2011;21:627-638.
    • (2011) J Process Control. , vol.21 , pp. 627-638
    • Sun, W.1    Meng, Y.2    Palazoglu, A.3    Zhao, J.4    Zhang, H.5    Zhang, J.6
  • 22
    • 4944253785 scopus 로고    scopus 로고
    • Statistical process control charts for batch operations based on independent component analysis
    • Albazzaz H, Wang XZ. Statistical process control charts for batch operations based on independent component analysis. Ind Eng Chem Res. 2004;43:6731-6741.
    • (2004) Ind Eng Chem Res. , vol.43 , pp. 6731-6741
    • Albazzaz, H.1    Wang, X.Z.2
  • 23
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee JM, Qin SJ, Lee IB. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006;52:3501-3514.
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 24
    • 36348941124 scopus 로고    scopus 로고
    • Fault detection of nonlinear processes using multiway kernel independent component analysis
    • Zhang Y, Qin SJ. Fault detection of nonlinear processes using multiway kernel independent component analysis. Ind Eng Chem Res. 2007;46:7780-7787.
    • (2007) Ind Eng Chem Res. , vol.46 , pp. 7780-7787
    • Zhang, Y.1    Qin, S.J.2
  • 25
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid M, Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom Intell Lab Syst. 2012;115:44-58.
    • (2012) Chemom Intell Lab Syst. , vol.115 , pp. 44-58
    • Rashid, M.1    Yu, J.2
  • 26
    • 84865495534 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method
    • Rashid M, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method. Ind Eng Chem Res. 2012;51:10910-10920.
    • (2012) Ind Eng Chem Res. , vol.51 , pp. 10910-10920
    • Rashid, M.1    Yu, J.2
  • 27
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
    • Yu J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis. Ind Eng Chem Res. 2011;50:3390-3402.
    • (2011) Ind Eng Chem Res. , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 28
    • 79958703777 scopus 로고    scopus 로고
    • Localized fisher discriminant analysis based complex chemical process monitoring
    • Yu J. Localized fisher discriminant analysis based complex chemical process monitoring. AIChE J. 2011;57:1817-1828.
    • (2011) AIChE J. , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 30
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • Chiang LH, Kotanchek ME, Kordon AK. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng. 2004;28:1389-1401.
    • (2004) Comput Chem Eng. , vol.28 , pp. 1389-1401
    • Chiang, L.H.1    Kotanchek, M.E.2    Kordon, A.K.3
  • 31
    • 72149111135 scopus 로고    scopus 로고
    • Fault detection and diagnosis in process data using one-class support vector machines
    • Mahadevan S, Shah S. Fault detection and diagnosis in process data using one-class support vector machines. J Process Control. 2009;19:1627-1639.
    • (2009) J Process Control. , vol.19 , pp. 1627-1639
    • Mahadevan, S.1    Shah, S.2
  • 32
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu J, Qin SJ. Multiway Gaussian mixture model based multiphase batch process monitoring. Ind Eng Chem Res. 2009;48:8585-8594.
    • (2009) Ind Eng Chem Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 33
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J, Qin SJ. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008;54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 34
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. J Process Control. 2012;22:778-788.
    • (2012) J Process Control. , vol.22 , pp. 778-788
    • Yu, J.1
  • 35
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem Eng Sci. 2012;68:506-519.
    • (2012) Chem Eng Sci. , vol.68 , pp. 506-519
    • Yu, J.1
  • 36
    • 84864912479 scopus 로고    scopus 로고
    • Multiway discrete hidden Markov model-based approach for dynamic batch process monitoring and fault classification
    • Yu J. Multiway discrete hidden Markov model-based approach for dynamic batch process monitoring and fault classification. AIChE J. 2012;58:2714-2725.
    • (2012) AIChE J. , vol.58 , pp. 2714-2725
    • Yu, J.1
  • 37
    • 79551483627 scopus 로고    scopus 로고
    • Development of hidden semi-Markov models for diagnosis of multiphase batch operation
    • Chen J, Jiang YC. Development of hidden semi-Markov models for diagnosis of multiphase batch operation. Chem Eng Sci. 2011;66: 1087-1099.
    • (2011) Chem Eng Sci. , vol.66 , pp. 1087-1099
    • Chen, J.1    Jiang, Y.C.2
  • 38
    • 70449094646 scopus 로고    scopus 로고
    • A survey on multistage/multiphase statistical modeling methods for batch processes
    • Yao Y, Gao F. A survey on multistage/multiphase statistical modeling methods for batch processes. Annu Rev Control. 2009;33:172-183.
    • (2009) Annu Rev Control. , vol.33 , pp. 172-183
    • Yao, Y.1    Gao, F.2
  • 39
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J, Liu J. Mixture principal component analysis models for process monitoring. Ind Eng Chem Res. 1999;38:1478-1488.
    • (1999) Ind Eng Chem Res. , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 40
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principal component analysis models
    • Zhao SJ, Zhang J, Xu YM. Monitoring of processes with multiple operating modes through multiple principal component analysis models. Ind Eng Chem Res. 2004;43:7025-7035.
    • (2004) Ind Eng Chem Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 41
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction based fault identification using a combined index
    • Yue H, Qin SJ. Reconstruction based fault identification using a combined index. Ind Eng Chem Res. 2001;40:4403-4414.
    • (2001) Ind Eng Chem Res. , vol.40 , pp. 4403-4414
    • Yue, H.1    Qin, S.J.2
  • 42
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw. 1999;10:626-634.
    • (1999) IEEE Trans Neural Netw. , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 43
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. IEEE Trans Neural Netw. 2000;13:411-430.
    • (2000) IEEE Trans Neural Netw. , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 45
    • 0032045464 scopus 로고    scopus 로고
    • Synchronization of batch trajectories using dynamic time warping
    • Kassidas A, MacGregor JF, Taylor PA. Synchronization of batch trajectories using dynamic time warping. AIChE J. 1998;44:864-875.
    • (1998) AIChE J. , vol.44 , pp. 864-875
    • Kassidas, A.1    MacGregor, J.F.2    Taylor, P.A.3
  • 46
    • 0034290916 scopus 로고    scopus 로고
    • ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation
    • Lee TW, Lewicki MS, Sejnowski TJ. ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans Pattern Anal Mach Intell. 2000;22:1078-1089.
    • (2000) IEEE Trans Pattern Anal Mach Intell. , vol.22 , pp. 1078-1089
    • Lee, T.W.1    Lewicki, M.S.2    Sejnowski, T.J.3
  • 47
    • 40549145872 scopus 로고    scopus 로고
    • Inferring the directionality of coupling with conditional mutual information
    • Vejmelka M, Paluš M. Inferring the directionality of coupling with conditional mutual information. Phys Rev E. 2008;77:026214.
    • (2008) Phys Rev E. , vol.77 , pp. 026214
    • Vejmelka, M.1    Paluš, M.2
  • 48
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: penicillin production
    • Birol G, Ündey C, Çinar A. A modular simulation package for fed-batch fermentation: penicillin production. Comput Chem Eng. 2002;26:1553-1565.
    • (2002) Comput Chem Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Ündey, C.2    Çinar, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.