메뉴 건너뛰기




Volumn 24, Issue 13, 2013, Pages 1529-1548

Hemocompatibility of polymeric nanostructured surfaces

Author keywords

hemocompatibility; nanofiber surfaces; nanowire surfaces; platelets

Indexed keywords

ACTIVATED PLATELETS; BIOMATERIAL SURFACES; HEMOCOMPATIBILITY; NANOSTRUCTURED SURFACE; NANOWIRE SURFACE; PLATELET ACTIVATION; PROTEIN ADSORPTION; SIGNIFICANT DIFFERENCES;

EID: 84880465456     PISSN: 09205063     EISSN: 15685624     Source Type: Journal    
DOI: 10.1080/09205063.2013.777228     Document Type: Article
Times cited : (51)

References (68)
  • 1
    • 84870217287 scopus 로고    scopus 로고
    • Our time: A call to save preventable death from cardiovascular disease (heart disease and stroke
    • Smith SC, Jr. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J. Am. College Cardiol. 2012;60:2343-2348.
    • (2012) J. Am. College Cardiol , vol.60 , pp. 2343-2348
    • Smith Jr., S.C.1
  • 2
    • 0038728411 scopus 로고    scopus 로고
    • Tissue engineering therapy for cardiovascular disease
    • Nugent HM, Edelman ER. Tissue engineering therapy for cardiovascular disease. Circulat. Res. 2003;92:1068-1078.
    • (2003) Circulat. Res , vol.92 , pp. 1068-1078
    • Nugent, H.M.1    Edelman, E.R.2
  • 4
    • 0038486163 scopus 로고    scopus 로고
    • Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology?
    • Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart. 2003;89:651-656.
    • (2003) Heart , vol.89 , pp. 651-656
    • Heublein, B.1    Rohde, R.2    Kaese, V.3    Niemeyer, M.4    Hartung, W.5    Haverich, A.6
  • 5
    • 0029761378 scopus 로고    scopus 로고
    • Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries
    • van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HMM, Serruys PW, Holmes DR, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996;94:1690-1697.
    • (1996) Circulation , vol.94 , pp. 1690-1697
    • Van Der Giessen, W.J.1    Lincoff, A.M.2    Schwartz, R.S.3    Van Beusekom, H.M.M.4    Serruys, P.W.5    Holmes, D.R.6
  • 6
    • 11144350558 scopus 로고    scopus 로고
    • Electrospinning of gelatin fibers and gelatin/ PCL composite fibrous scaffolds
    • Part B: Appl. Biomater
    • Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z-M. Electrospinning of gelatin fibers and gelatin/ PCL composite fibrous scaffolds. J. Biomed. Mater. Res., Part B: Appl. Biomater. 2005;72B:156-165.
    • (2005) J. Biomed. Mater. Res. , vol.72 B , pp. 156-165
    • Zhang, Y.1    Ouyang, H.2    Lim, C.T.3    Ramakrishna, S.4    Huang, Z.-M.5
  • 7
    • 67349109101 scopus 로고    scopus 로고
    • Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants
    • Ajili SH, Ebrahimi NG, Soleimani M. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 2009;5:1519-1530.
    • (2009) Acta Biomater , vol.5 , pp. 1519-1530
    • Ajili, S.H.1    Ebrahimi, N.G.2    Soleimani, M.3
  • 8
  • 11
    • 34548180543 scopus 로고    scopus 로고
    • Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering
    • Motlagh D, Allen J, Hoshi R, Yang J, Lui K, Ameer G. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J. Biomed. Mater. Res. Part A. 2007;82A:907-916.
    • (2007) J. Biomed. Mater. Res. Part A , vol.82 A , pp. 907-916
    • Motlagh, D.1    Allen, J.2    Hoshi, R.3    Yang, J.4    Lui, K.5    Ameer, G.6
  • 12
    • 0033663829 scopus 로고    scopus 로고
    • Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: Blood compatibility and biocompatibility studies
    • Belanger MC, Marois Y, Roy R, Mehri Y, Wagner E, Zhang Z, et al. Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: blood compatibility and biocompatibility studies. Artif. Org. 2000;24:879-888.
    • (2000) Artif. Org , vol.24 , pp. 879-888
    • Belanger, M.C.1    Marois, Y.2    Roy, R.3    Mehri, Y.4    Wagner, E.5    Zhang, Z.6
  • 14
    • 33646345346 scopus 로고    scopus 로고
    • Hernocompatibility evaluation of poly(glycerolsebacate) in vitro for vascular tissue engineering
    • Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA. Hernocompatibility evaluation of poly(glycerolsebacate) in vitro for vascular tissue engineering. Biomaterials. 2006;27:4315-4324.
    • (2006) Biomaterials , vol.27 , pp. 4315-4324
    • Motlagh, D.1    Yang, J.2    Lui, K.Y.3    Webb, A.R.4    Ameer, G.A.5
  • 15
    • 79953898245 scopus 로고    scopus 로고
    • Fibroblast/fibrocyte: Surface interaction dictates tissue reactions to micropillar implants
    • Baker DW, Liu X, Weng H, Luo C, Tang L. Fibroblast/fibrocyte: surface interaction dictates tissue reactions to micropillar implants. Biomacromolecules. 2011;12:997-1005.
    • (2011) Biomacromolecules , vol.12 , pp. 997-1005
    • Baker, D.W.1    Liu, X.2    Weng, H.3    Luo, C.4    Tang, L.5
  • 18
    • 77955058095 scopus 로고    scopus 로고
    • Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility
    • Feng Y, Zhao H, Zhang L, Guo J. Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Front. Chem. Eng. China. 2010;4:372-381.
    • (2010) Front. Chem. Eng. China , vol.4 , pp. 372-381
    • Feng, Y.1    Zhao, H.2    Zhang, L.3    Guo, J.4
  • 19
    • 34547741083 scopus 로고    scopus 로고
    • Current strategies towards hemocompatible coatings
    • Werner C, Maitz MF, Sperling C. Current strategies towards hemocompatible coatings. J. Mater. Chem. 2007;17:3376-3384.
    • (2007) J. Mater. Chem , vol.17 , pp. 3376-3384
    • Werner, C.1    Maitz, M.F.2    Sperling, C.3
  • 20
    • 0023848647 scopus 로고
    • In vitro and in vivo interactions of cells with biomaterials
    • Ziats NP, Miller KM, Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials. 1988;9:5-13.
    • (1988) Biomaterials , vol.9 , pp. 5-13
    • Ziats, N.P.1    Miller, K.M.2    Anderson, J.M.3
  • 21
    • 79960561825 scopus 로고    scopus 로고
    • Biocompatibility of implants: Lymphocyte/macrophage interactions
    • Anderson JM, McNally AK. Biocompatibility of implants: lymphocyte/macrophage interactions. Semin. Immunopathol. 2011;33:221-233.
    • (2011) Semin. Immunopathol , vol.33 , pp. 221-233
    • Anderson, J.M.1    McNally, A.K.2
  • 24
    • 79959915891 scopus 로고    scopus 로고
    • The hemocompatibility of a nitric oxide generating polymer that catalyzes S-nitrosothiol decomposition in an extracorporeal circulation model
    • Major TC, Brant DO, Burney CP, Amoako KA, Annich GM, Meyerhoff ME, Handa H, Bartlett RH. The hemocompatibility of a nitric oxide generating polymer that catalyzes S-nitrosothiol decomposition in an extracorporeal circulation model. Biomaterials. 2011;32:5957-5969.
    • (2011) Biomaterials , vol.32 , pp. 5957-5969
    • Major, T.C.1    Brant, D.O.2    Burney, C.P.3    Amoako, K.A.4    Annich, G.M.5    Meyerhoff, M.E.6    Handa, H.7    Bartlett, R.H.8
  • 26
    • 51649117791 scopus 로고    scopus 로고
    • Organic-inorganic surface modifications for titanium implant surfaces
    • de Jonge L, Leeuwenburgh S, Wolke J, Jansen J. Organic-inorganic surface modifications for titanium implant surfaces. Pharmaceut. Res. 2008;25:2357-2369.
    • (2008) Pharmaceut. Res , vol.25 , pp. 2357-2369
    • De Jonge, L.1    Leeuwenburgh, S.2    Wolke, J.3    Jansen, J.4
  • 27
    • 0027006792 scopus 로고
    • Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism
    • Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Mater. Res. 1992;26:1543-1552.
    • (1992) J. Biomed. Mater. Res , vol.26 , pp. 1543-1552
    • Ishihara, K.1    Oshida, H.2    Endo, Y.3    Ueda, T.4    Watanabe, A.5    Nakabayashi, N.6
  • 29
    • 79955867624 scopus 로고    scopus 로고
    • Sub-micron tailoring of bi-soft segment asymmetric polyurethane membrane surfaces with enhanced hemocompatibility properties
    • Faria M, Brogueira P, de Pinho MN. Sub-micron tailoring of bi-soft segment asymmetric polyurethane membrane surfaces with enhanced hemocompatibility properties. Colloids Surf. B:Biointerf. 2011;86:21-27.
    • (2011) Colloids Surf. B:Biointerf , vol.86 , pp. 21-27
    • Faria, M.1    Brogueira, P.2    De Pinho, M.N.3
  • 31
    • 77950679966 scopus 로고    scopus 로고
    • The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction
    • Cao H, McHugh K, Chew SY, Anderson JM. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J. Biomed. Mater. Res. Part A. 2010;93A:1151-1159.
    • (2010) J. Biomed. Mater. Res. Part A , vol.93 A , pp. 1151-1159
    • Cao, H.1    McHugh, K.2    Chew, S.Y.3    Anderson, J.M.4
  • 32
    • 79957747747 scopus 로고    scopus 로고
    • Electroconductive polymeric nanowire templates facilitates in vitro C17.2 neural stem cell line adhesion, proliferation and differentiation
    • Bechara S, Wadman L, Popat KC. Electroconductive polymeric nanowire templates facilitates in vitro C17.2 neural stem cell line adhesion, proliferation and differentiation. Acta Biomater. 2011;7:2892-2901.
    • (2011) Acta Biomater , vol.7 , pp. 2892-2901
    • Bechara, S.1    Wadman, L.2    Popat, K.C.3
  • 34
    • 34347374128 scopus 로고    scopus 로고
    • Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts
    • Park K, Ju YM, Son JS, Ahn KD, Han DK. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J. Biomater. Sci. Polym. Ed. 2007;18:369-382.
    • (2007) J. Biomater. Sci. Polym. Ed , vol.18 , pp. 369-382
    • Park, K.1    Ju, Y.M.2    Son, J.S.3    Ahn, K.D.4    Han, D.K.5
  • 35
    • 42949154178 scopus 로고    scopus 로고
    • Nanostructured scaffolds for neural applications
    • Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. Nanomedicine. 2008;3:183-199.
    • (2008) Nanomedicine , vol.3 , pp. 183-199
    • Seidlits, S.K.1    Lee, J.Y.2    Schmidt, C.E.3
  • 36
    • 77249143843 scopus 로고    scopus 로고
    • Template synthesized poly(epsilon-caprolactone) nanowire surfaces for neural tissue engineering
    • Bechara SL, Judson A, Popat KC. Template synthesized poly(epsilon- caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials. 2010;31:3492-3501.
    • (2010) Biomaterials , vol.31 , pp. 3492-3501
    • Bechara, S.L.1    Judson, A.2    Popat, K.C.3
  • 37
    • 77957588918 scopus 로고    scopus 로고
    • The return of a forgotten polymer - Polycaprolactone in the 21st century
    • Woodruff MA, Hutmacher DW. The return of a forgotten polymer - polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217-1256.
    • (2010) Prog. Polym. Sci , vol.35 , pp. 1217-1256
    • Woodruff, M.A.1    Hutmacher, D.W.2
  • 38
    • 52449095006 scopus 로고    scopus 로고
    • Surface modification of polycaprolactone membrane via layer-by-layer deposition for promoting blood compatibility
    • Part B: Appl. Biomater
    • Liu L, Guo SR, Chang J, Ning CQ, Dong CM, Yan DY. Surface modification of polycaprolactone membrane via layer-by-layer deposition for promoting blood compatibility. J. Biomed. Mater. Res., Part B: Appl. Biomater. 2008;87B:244-250.
    • (2008) J. Biomed. Mater. Res. , vol.87 B , pp. 244-250
    • Liu, L.1    Guo, S.R.2    Chang, J.3    Ning, C.Q.4    Dong, C.M.5    Yan, D.Y.6
  • 39
    • 79959609806 scopus 로고    scopus 로고
    • Cytocompatibility of electrospun nanofiber tubular scaffolds for small diameter tissue engineering blood vessels
    • Xiang P, Li M, Zhang CY, Chen DL, Zhou ZH. Cytocompatibility of electrospun nanofiber tubular scaffolds for small diameter tissue engineering blood vessels. Int. J. Biolog. Macromol. 2011;49:281-288.
    • (2011) Int. J. Biolog. Macromol , vol.49 , pp. 281-288
    • Xiang, P.1    Li, M.2    Zhang, C.Y.3    Chen, D.L.4    Zhou, Z.H.5
  • 40
    • 33744942905 scopus 로고    scopus 로고
    • Fabrication and characterization of six electrospun poly (alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications
    • Li WJ, Cooper JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly (alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377-385.
    • (2006) Acta Biomater , vol.2 , pp. 377-385
    • Li, W.J.1    Cooper, J.A.2    Mauck, R.L.3    Tuan, R.S.4
  • 43
    • 79953660718 scopus 로고    scopus 로고
    • Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration
    • Cooper A, Bhattarai N, Zhang MQ. Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohyd. Polym. 2011;85:149-156.
    • (2011) Carbohyd. Polym , vol.85 , pp. 149-156
    • Cooper, A.1    Bhattarai, N.2    Zhang, M.Q.3
  • 44
    • 84863212243 scopus 로고    scopus 로고
    • Performance of electrospun poly (epsilon-caprolactone) fiber meshes used with mineral trioxide aggregates in a pulp capping procedure
    • Lee W, Oh JH, Park JC, Shin HI, Baek JH, Ryoo HM, Woo KM. Performance of electrospun poly (epsilon-caprolactone) fiber meshes used with mineral trioxide aggregates in a pulp capping procedure. Acta Biomater. 2012;8:2986-2995.
    • (2012) Acta Biomater , vol.8 , pp. 2986-2995
    • Lee, W.1    Oh, J.H.2    Park, J.C.3    Shin, H.I.4    Baek, J.H.5    Ryoo, H.M.6    Woo, K.M.7
  • 45
    • 1042298996 scopus 로고    scopus 로고
    • In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts
    • Ng KW, Khor HL, Hutmacher DW. In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials. 2004;25:2807-2818.
    • (2004) Biomaterials , vol.25 , pp. 2807-2818
    • Ng, K.W.1    Khor, H.L.2    Hutmacher, D.W.3
  • 47
    • 52649150222 scopus 로고    scopus 로고
    • Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: Accelerated versus simulated physiological conditions
    • Christopher XFL, Monica MS, Swee-Hin T, Dietmar WH. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed. Mater. 2008;3:034108.
    • (2008) Biomed. Mater , vol.3 , pp. 034108
    • Christopher, X.F.L.1    Monica, M.S.2    Swee-Hin, T.3    Dietmar, W.H.4
  • 48
    • 3242700527 scopus 로고    scopus 로고
    • Making tissue engineering scaffolds work. review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds
    • Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 2003;5:29-39.
    • (2003) Eur. Cell Mater , vol.5 , pp. 29-39
    • Sachlos, E.1    Czernuszka, J.T.2
  • 49
    • 77249143843 scopus 로고    scopus 로고
    • Template synthesized poly(?-caprolactone) nanowire surfaces for neural tissue engineering
    • Bechara SL, Judson A, Popat KC. Template synthesized poly(?-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials. 2010;31:3492-3501.
    • (2010) Biomaterials , vol.31 , pp. 3492-3501
    • Bechara, S.L.1    Judson, A.2    Popat, K.C.3
  • 50
    • 67349266805 scopus 로고    scopus 로고
    • Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold
    • Redenti S, Tao S, Yang J, Gu P, Klassen H, Saigal S, Desai T, Young MJ. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J. Ocular. Biol. Dis. Informat. 2008;1:19-29.
    • (2008) J. Ocular. Biol. Dis. Informat , vol.1 , pp. 19-29
    • Redenti, S.1    Tao, S.2    Yang, J.3    Gu, P.4    Klassen, H.5    Saigal, S.6    Desai, T.7    Young, M.J.8
  • 51
    • 73449089453 scopus 로고    scopus 로고
    • Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering
    • He L, Liu B, Xipeng G, Xie G, Liao S, Quan D, Cai D, Lu J, Ramakrishna S. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur. Cell Mater. 2009;18:63-74.
    • (2009) Eur. Cell Mater , vol.18 , pp. 63-74
    • He, L.1    Liu, B.2    Xipeng, G.3    Xie, G.4    Liao, S.5    Quan, D.6    Cai, D.7    Lu, J.8    Ramakrishna, S.9
  • 52
    • 84892439314 scopus 로고    scopus 로고
    • Compartmentalization of synthetic body fluid constituents for coating electrospun PCL nanofiber mats with different calcium phosphate phases
    • Mavis B. Compartmentalization of synthetic body fluid constituents for coating electrospun PCL nanofiber mats with different calcium phosphate phases. J. Biomech. 2011;44:7.
    • (2011) J. Biomech , vol.44 , pp. 7
    • Mavis, B.1
  • 54
    • 84869083365 scopus 로고    scopus 로고
    • The in vitro and in vivo biocompatibility evaluation of heparin-poly(?-caprolactone) conjugate for vascular tissue engineering scaffolds
    • Ye L, Wu X, Duan H-Y, Geng X, Chen B, Gu Y-Q, et al. The in vitro and in vivo biocompatibility evaluation of heparin-poly(?-caprolactone) conjugate for vascular tissue engineering scaffolds. J. Biomed. Mater. Res. Part A. 2012;100A:3251-3258.
    • (2012) J. Biomed. Mater. Res. Part A , vol.100 A , pp. 3251-3258
    • Ye, L.1    Wu, X.2    Duan, H.-Y.3    Geng, X.4    Chen, B.5    Gu, Y.-Q.6
  • 55
    • 33646358716 scopus 로고    scopus 로고
    • Nano-featured scaffolds for tissue engineering: A review of spinning methodologies
    • Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 2006;12:435-447.
    • (2006) Tissue Eng , vol.12 , pp. 435-447
    • Murugan, R.1    Ramakrishna, S.2
  • 56
    • 57549091599 scopus 로고    scopus 로고
    • Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications
    • Popat KC, Porter JR, Henson A. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009;30:780-788.
    • (2009) Biomaterials , vol.30 , pp. 780-788
    • Popat, K.C.1    Porter, J.R.2    Henson, A.3
  • 57
    • 77956641579 scopus 로고    scopus 로고
    • Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds
    • Ruckh TT, Kumar K, Kipper MJ, Popat KC. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds. Acta Biomater. 2010;6:2949-2959.
    • (2010) Acta Biomater , vol.6 , pp. 2949-2959
    • Ruckh, T.T.1    Kumar, K.2    Kipper, M.J.3    Popat, K.C.4
  • 58
    • 0037276786 scopus 로고    scopus 로고
    • Characterization of vapor deposited poly (ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems
    • Popat KC, Johnson RW, Desai TA. Characterization of vapor deposited poly (ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems. J. Vacuum Sci. Technol. B. 2003;21:645-654.
    • (2003) J. Vacuum Sci. Technol. B , vol.21 , pp. 645-654
    • Popat, K.C.1    Johnson, R.W.2    Desai, T.A.3
  • 59
    • 77249143843 scopus 로고    scopus 로고
    • Template synthesized poly(e-caprolactone) nanowire surfaces for neural tissue engineering
    • Bechara SL, Judson A, Popat KC. Template synthesized poly(e-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials. 2010;31:3492-3501.
    • (2010) Biomaterials , vol.31 , pp. 3492-3501
    • Bechara, S.L.1    Judson, A.2    Popat, K.C.3
  • 60
    • 57549091599 scopus 로고    scopus 로고
    • Biodegradable poly(?-caprolactone) nanowires for bone tissue engineering applications
    • Porter JR, Henson A, Popat KC. Biodegradable poly(?-caprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009;30:780-788.
    • (2009) Biomaterials , vol.30 , pp. 780-788
    • Porter, J.R.1    Henson, A.2    Popat, K.C.3
  • 62
    • 20444421544 scopus 로고    scopus 로고
    • Interpretation of protein adsorption: Surface-induced conformational changes
    • Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 2005;127:8168-8173.
    • (2005) J. Am. Chem. Soc , vol.127 , pp. 8168-8173
    • Roach, P.1    Farrar, D.2    Perry, C.C.3
  • 63
    • 0026664548 scopus 로고
    • Atomic structure and chemistry of human serum albumin
    • Jul 16
    • Xm H, Dc C. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358:209-215.
    • (1992) Nature , vol.358 , pp. 209-215
    • Xm, H.1    Dc, C.2
  • 65
    • 0026781370 scopus 로고
    • Characterization of monoclonal antibodies physically adsorbed onto polystyrene latex particles
    • van Erp R, Linders YE, van Sommeren AP, Gribnau TC. Characterization of monoclonal antibodies physically adsorbed onto polystyrene latex particles. J. Immunol. Meth. 1992;152:191-199.
    • (1992) J. Immunol. Meth , vol.152 , pp. 191-199
    • Van Erp, R.1    Linders, Y.E.2    Van Sommeren, A.P.3    Gribnau, T.C.4
  • 66
    • 0034936075 scopus 로고    scopus 로고
    • Evaluation of blood compatibility of fluorinated polyimide by immunolabeling assay
    • Nagaoka S, Kanno M, Kawakami H, Kubota S. Evaluation of blood compatibility of fluorinated polyimide by immunolabeling assay. J. Artif. Org. 2001;4:107-112.
    • (2001) J. Artif. Org , vol.4 , pp. 107-112
    • Nagaoka, S.1    Kanno, M.2    Kawakami, H.3    Kubota, S.4
  • 67
    • 62249114931 scopus 로고    scopus 로고
    • Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets
    • Wan L-S, Xu Z-K. Polymer surfaces structured with random or aligned electrospun nanofibers to promote the adhesion of blood platelets. J. Biomed. Mater. Res. Part A. 2009;89A:168-175.
    • (2009) J. Biomed. Mater. Res. Part A , vol.89 A , pp. 168-175
    • Wan, L.-S.1    Xu, Z.-K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.