메뉴 건너뛰기




Volumn 11, Issue 2, 2009, Pages 154-164

Wave height prediction at the Caspian Sea using a data-driven model and ensemble-based data assimilation methods

Author keywords

Assimilation forecast cycle; Data assimilation; Dynamic neural network; Ensemble Kalman filter; Wind waves

Indexed keywords


EID: 64349097098     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2009.043     Document Type: Article
Times cited : (20)

References (24)
  • 1
    • 0036132356 scopus 로고    scopus 로고
    • Online wave prediction
    • Agrawal, J. D. & Deo, M. C. 2002 Online wave prediction. Mar. Struct. 15 (1), 57-74.
    • (2002) Mar. Struct , vol.15 , Issue.1 , pp. 57-74
    • Agrawal, J.D.1    Deo, M.C.2
  • 3
    • 64349088067 scopus 로고    scopus 로고
    • Faculty of Electrical Engineering, Mathematics and Computer Science, Technical University of Delft, The Netherlands
    • Faculty of Electrical Engineering, Mathematics and Computer Science, Technical University of Delft, The Netherlands.
  • 4
    • 64349102294 scopus 로고    scopus 로고
    • Combined neural network and ensemble kalman filter application for discharge and water level forecasting in the river Rhine
    • Nice, France
    • Aguilar, S. G., El Serafy, G. Y. & Mynett, A. E. 2006 Combined neural network and ensemble kalman filter application for discharge and water level forecasting in the river Rhine. in: Proc. 7th International Conference on Hydroinformatics, HIC 2006, Nice, France Vol. 11, pp. 1447-1454.
    • (2006) Proc. 7th International Conference on Hydroinformatics, HIC 2006 , vol.11 , pp. 1447-1454
    • Aguilar, S.G.1    El Serafy, G.Y.2    Mynett, A.E.3
  • 5
    • 2642563544 scopus 로고    scopus 로고
    • Temporal significant wave height estimation from wind speed by perceptron Kalman filtering
    • Altunkaynak, A. & Ozger, M. 2004 Temporal significant wave height estimation from wind speed by perceptron Kalman filtering. Ocean Eng. 31, 1245-1255.
    • (2004) Ocean Eng , vol.31 , pp. 1245-1255
    • Altunkaynak, A.1    Ozger, M.2
  • 7
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources application. Part 1-background methodology
    • Bowden, G. J., Dandy, G. C. & Maier, H. R. 2005 Input determination for neural network models in water resources application. Part 1-background methodology. J. Hydrol. 301, 75-92.
    • (2005) J. Hydrol , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 8
    • 0035400982 scopus 로고    scopus 로고
    • Wave prediction using neural networks
    • Deo, M. C., Jha, A. & Chaphekar, A. S. 2001 Wave prediction using neural networks. Ocean Eng. 28 (7), 889-898.
    • (2001) Ocean Eng , vol.28 , Issue.7 , pp. 889-898
    • Deo, M.C.1    Jha, A.2    Chaphekar, A.S.3
  • 9
    • 0028193070 scopus 로고
    • Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast model statistics
    • Evensen, G. 1994 Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast model statistics. J. Geophys. Res. 99 (C5), 10143-10162.
    • (1994) J. Geophys. Res , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 10
    • 64349120137 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G. 2003 The ensemble Kalman filter: theoretical formulation and practical implementation. Mon. Weather Rev. 123, 1128-1145.
    • (2003) Mon. Weather Rev , vol.123 , pp. 1128-1145
    • Evensen, G.1
  • 11
    • 0026205299 scopus 로고
    • Filtering of colored noise for speech enhancement and coding
    • Gibson, J., Koo, B. & Gray, S. 1991 Filtering of colored noise for speech enhancement and coding. IEEE Trans. Signal Process. 39 (8), 1732-1742.
    • (1991) IEEE Trans. Signal Process , vol.39 , Issue.8 , pp. 1732-1742
    • Gibson, J.1    Koo, B.2    Gray, S.3
  • 12
    • 85009629937 scopus 로고    scopus 로고
    • Neural networks in ocean engineering
    • Jain, P. & Deo, M. C. 2006 Neural networks in ocean engineering. SAOS 1 (1), 25-35.
    • (2006) SAOS , vol.1 , Issue.1 , pp. 25-35
    • Jain, P.1    Deo, M.C.2
  • 14
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E. 1960 A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35-45.
    • (1960) Trans. ASME J. Basic Eng , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 15
    • 33845678066 scopus 로고    scopus 로고
    • One day wave forecast based on artificial neural network
    • Londhe, S. N. & Panchang, V. 2006 One day wave forecast based on artificial neural network. J. Atmos. Oceanic Technol. 23, 1593-1603.
    • (2006) J. Atmos. Oceanic Technol , vol.23 , pp. 1593-1603
    • Londhe, S.N.1    Panchang, V.2
  • 16
    • 64349122668 scopus 로고    scopus 로고
    • Lu, Z., Lean, T. K., VanderMerwe, R., Frolov, S. & Baptista, A. M. 2007 Sequential Data Assimilation with Sigma-point Kalman Filter on Low dimensional Manifold. Technical Report TR-07-001, NSF-STC for coastal margin observation and prediction. Available at: http://www.stccmop.org/files/CMOP-TR-07-001.Pdf
    • Lu, Z., Lean, T. K., VanderMerwe, R., Frolov, S. & Baptista, A. M. 2007 Sequential Data Assimilation with Sigma-point Kalman Filter on Low dimensional Manifold. Technical Report TR-07-001, NSF-STC for coastal margin observation and prediction. Available at: http://www.stccmop.org/files/CMOP-TR-07-001.Pdf
  • 17
    • 1842843640 scopus 로고    scopus 로고
    • Improving wave prediction with artificial neural network
    • Makarynskyy, O. 2004 Improving wave prediction with artificial neural network. Ocean Eng. 31, 709-724.
    • (2004) Ocean Eng , vol.31 , pp. 709-724
    • Makarynskyy, O.1
  • 18
    • 33244493086 scopus 로고    scopus 로고
    • Ocean wave forecasting using recurrent neural networks
    • Mandal, S. & Prabaharan, N. 2006 Ocean wave forecasting using recurrent neural networks. Ocean Eng. 33 (10), 1401-1410.
    • (2006) Ocean Eng , vol.33 , Issue.10 , pp. 1401-1410
    • Mandal, S.1    Prabaharan, N.2
  • 19
    • 85009557670 scopus 로고    scopus 로고
    • Hydroinformatics and its applications at Delft hydraulics
    • Mynett, M. 1999 Hydroinformatics and its applications at Delft hydraulics. J. Hydroinf. 1 (2), 83-102.
    • (1999) J. Hydroinf , vol.1 , Issue.2 , pp. 83-102
    • Mynett, M.1
  • 20
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-a discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. 1970 River flow forecasting through conceptual models part I-a discussion of principles. J. Hydrol. 10 (3), 282-290.
    • (1970) J. Hydrol , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 21
    • 64349122236 scopus 로고    scopus 로고
    • Solomatine, D. 2005 Data-driven modeling and computational intelligence methods in hydrology. In Encyclopedia of Hydrological Science (ed. in M. Anderson). John Wiley and Sons, Ltd., Chichester.
    • Solomatine, D. 2005 Data-driven modeling and computational intelligence methods in hydrology. In Encyclopedia of Hydrological Science (ed. in M. Anderson). John Wiley and Sons, Ltd., Chichester.
  • 22
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • Solomatine, D. P. & Ostfeld, A. 2008 Data-driven modelling: some past experiences and new approaches. J. Hydroinf. 10 (1), 3-21.
    • (2008) J. Hydroinf , vol.10 , Issue.1 , pp. 3-21
    • Solomatine, D.P.1    Ostfeld, A.2
  • 23


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.