메뉴 건너뛰기




Volumn 24, Issue 6, 2010, Pages 925-937

How Bayesian data assimilation can be used to estimate the mathematical structure of a model

Author keywords

Bayesian statistics; Data assimilation; Model structure estimation; Uncertainty; Water balance

Indexed keywords

BAYESIAN; BAYESIAN FRAMEWORKS; BAYESIAN STATISTICS; CONCEPTUAL MODEL; DATA ASSIMILATION; DATA ASSIMILATION MODEL; DATA DENSITY; FUNCTIONAL FORMS; HYDROLOGICAL MODELS; INCOMPLETE OBSERVATION; INITIAL CONDITIONS; MAPPING STRUCTURES; MATHEMATICAL FORMS; MATHEMATICAL STRUCTURE; MODEL EQUATIONS; MODEL INPUTS; MODEL PREDICTION; NON-LINEAR; OBSERVED SYSTEMS; OUTPUT MAPPING; PHYSICALLY BASED; PRIOR INFORMATION; PRIOR KNOWLEDGE; STRUCTURE ESTIMATION; UNCERTAIN KNOWLEDGE; WATER BALANCE;

EID: 77954427278     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-010-0387-y     Document Type: Article
Times cited : (32)

References (24)
  • 1
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2): 174-188.
    • (2002) IEEE Trans Signal Process , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 2
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty in prediction
    • Beven KJ, Binley AM (1992) The future of distributed models: model calibration and uncertainty in prediction. Hydrol Process 6: 279-298.
    • (1992) Hydrol Process , vol.6 , pp. 279-298
    • Beven, K.J.1    Binley, A.M.2
  • 3
    • 77954424681 scopus 로고    scopus 로고
    • Bulygina N (2007) Model structure identification and correction through data assimilation. PhD dissertation, Department of Hydrology and Water Resources, The University of Arizona, Tucson.
  • 4
    • 72149123038 scopus 로고    scopus 로고
    • Bulygina N, Gupta H (2009) Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour Res 45 (special issue on 'Uncertainty Assessment in Surface and Subsurface Hydrology'W00B13). doi: 10. 1029/2007WR006749.
  • 5
    • 51349141022 scopus 로고    scopus 로고
    • Clark MP, Slater AG, Rupp DE, Woods RA, Vrugt JA, Gupta GV, Wagener T, Hay LE (2008) FUSE: a modular framework to diagnose differences between hydrological models. Water Resour Res 44: W00B02. doi: 10. 1029/2007WR006735.
  • 6
    • 77954428157 scopus 로고    scopus 로고
    • de Vos NJ, Rientjes THM, Gupta HV (2009) Diagnostic evaluation of conceptual rainfall-runoff models using temporal clustering. Hydrol Process (in press).
  • 7
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo methods for Bayesian filtering
    • Doucet A, Godsill S, Andriew C (2000) On sequential Monte Carlo methods for Bayesian filtering. Stat Comput 10: 197-208.
    • (2000) Stat Comput , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andriew, C.3
  • 8
    • 77954424327 scopus 로고    scopus 로고
    • Dugundji J, Granas A (2003) Fixed point theory. Springer-Verlag. ISBN 0-387-00173-5.
  • 9
    • 77954427620 scopus 로고    scopus 로고
    • Ferguson TS (1983) Bayesian density estimation by mixture of normal distributions. In: Rizvi H, Rustagi J (eds) Recent advances in statistics. Wiley, New York.
  • 10
    • 0029659801 scopus 로고    scopus 로고
    • Bayesian estimation of uncertainty in runoff prediction and the value of data: An example of the GLUE approach
    • Freer J, Beven KJ, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an example of the GLUE approach. Water Resour Res 32(7): 2161-2173.
    • (1996) Water Resour Res , vol.32 , Issue.7 , pp. 2161-2173
    • Freer, J.1    Beven, K.J.2    Ambroise, B.3
  • 11
    • 49449115848 scopus 로고    scopus 로고
    • Reconciling theory with observations: Towards a diagnostic approach to model evaluation
    • doi:10.1002/hyp.6989
    • Gupta HV, Wagener T, Liu Y (2008) Reconciling theory with observations: towards a diagnostic approach to model evaluation. Hydrol Process 22(18): 3802-3813. doi: 10. 1002/hyp. 6989.
    • (2008) Hydrol Process , vol.22 , Issue.18 , pp. 3802-3813
    • Gupta, H.V.1    Wagener, T.2    Liu, Y.3
  • 12
    • 0032221057 scopus 로고    scopus 로고
    • Monte Carlo approximation for general state-space models
    • Hurzeler M, Kunsch HR (1998) Monte Carlo approximation for general state-space models. J Comput Graph Stat 7(2): 175-193.
    • (1998) J Comput Graph Stat , vol.7 , Issue.2 , pp. 175-193
    • Hurzeler, M.1    Kunsch, H.R.2
  • 13
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22: 79-86.
    • (1951) Ann Math Stat , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 14
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in hydrologic modeling: Towards an integrated hierarchical data assimilation framework
    • doi:10.1029/2006WR005756
    • Liu Y, Gupta H (2007) Uncertainty in hydrologic modeling: towards an integrated hierarchical data assimilation framework. Water Resour Res 43: W07401. doi: 10. 1029/2006WR005756.
    • (2007) Water Resour Res , vol.43
    • Liu, Y.1    Gupta, H.2
  • 15
    • 77954427098 scopus 로고    scopus 로고
    • Martinez GF, Gupta HV (2009) Continental scale diagnostic evaluation of the 'abcd' monthly water balance model for the conterminous US. Water Resour Res (in press).
  • 16
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrological model states and parameters: Sequential data assimilation using the particle filter
    • Moradkhani H, Hsu KL, Gupta H, Sorooshian S (2005) Uncertainty assessment of hydrological model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41(5): W0501.
    • (2005) Water Resour Res , vol.41 , Issue.5
    • Moradkhani, H.1    Hsu, K.L.2    Gupta, H.3    Sorooshian, S.4
  • 17
    • 0002881872 scopus 로고    scopus 로고
    • Bayesian curve fitting using multivariate normal mixtures
    • Muller P, Erkanli A, West M (1996) Bayesian curve fitting using multivariate normal mixtures. Biometrika 83(1): 67-79.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 67-79
    • Muller, P.1    Erkanli, A.2    West, M.3
  • 18
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of alternative conceptual-mathematical models
    • doi:10.1007/s00477-003-0151-7
    • Neuman S (2003) Maximum likelihood Bayesian averaging of alternative conceptual-mathematical models. Stoch Environ Res Risk Assess 17(5): 291-305. doi: 10. 1007/s00477-003-0151-7.
    • (2003) Stoch Environ Res Risk Assess , vol.17 , Issue.5 , pp. 291-305
    • Neuman, S.1
  • 19
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner M, Wong W (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82(392): 528-540.
    • (1987) J Am Stat Assoc , vol.82 , Issue.392 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 21
    • 0037442971 scopus 로고    scopus 로고
    • Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis
    • Wagener T, McIntyre N, Lees MJ, Wheater HS, Gupta HV (2003) Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrol Process 17(2): 455-476.
    • (2003) Hydrol Process , vol.17 , Issue.2 , pp. 455-476
    • Wagener, T.1    McIntyre, N.2    Lees, M.J.3    Wheater, H.S.4    Gupta, H.V.5
  • 22
    • 77954424627 scopus 로고    scopus 로고
    • Woolhiser DA, Smith RE, Goodrich DC (1990) KINEROS: a kinematic runoff and erosion model. USDA Agric Res Serv ARS-77: 130.
  • 23
    • 2942700220 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
    • doi:10.1029/2003WR002557
    • Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res 40: W05113. doi: 10. 1029/2003WR002557.
    • (2004) Water Resour Res , vol.40
    • Ye, M.1    Neuman, S.P.2    Meyer, P.D.3
  • 24
    • 0001891299 scopus 로고    scopus 로고
    • Data-based mechanistic modelling and validation of rainfall-flow processes
    • M. G. Anderson and P. G. Bates (Eds.), Chichester: Wiley
    • Young PC (2001) Data-based mechanistic modelling and validation of rainfall-flow processes. In: Anderson MG, Bates PG (eds) Model validation. Wiley, Chichester.
    • (2001) Model Validation
    • Young, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.