메뉴 건너뛰기




Volumn 10, Issue 4, 2008, Pages 289-300

TDNN with logical values for hydrologic modeling in a cold and snowy climate

Author keywords

Cold and snowy climate; Logical values; Precipitation runoff modeling; Time delay neural networks

Indexed keywords


EID: 54449083865     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2008.049     Document Type: Article
Times cited : (4)

References (29)
  • 1
    • 0031724896 scopus 로고    scopus 로고
    • Modelling nitrogen transport and retention in the catchments of southern Sweden
    • Arheimer, B. & Brandt, M. 1998 Modelling nitrogen transport and retention in the catchments of southern Sweden. Ambio 27, 471-480.
    • (1998) Ambio , vol.27 , pp. 471-480
    • Arheimer, B.1    Brandt, M.2
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000 Artificial neural networks in hydrology. I: preliminary concepts. ASCE J. Hydrol. Eng. 5 (2), 115-123.
    • (2000) ASCE J. Hydrol. Eng , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0032688155 scopus 로고    scopus 로고
    • Food forecasting with a neural network model
    • Campolo, M., Andreussi, P. & Soldati, A. 1999 Food forecasting with a neural network model. Water Resour. Res. 35 (4), 1191-1197.
    • (1999) Water Resour. Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 4
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang, Y. M., Chang, L. C. & Chang, F. J. 2004 Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J. Hydrol. 290, 297-311.
    • (2004) J. Hydrol , vol.290 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 5
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks: The state of the art
    • Coulibaly, P., Anctil, F. & Bobée, B. 1999 Hydrological forecasting using artificial neural networks: the state of the art. Can. J. Civ. Eng. 26(3), 293-304.
    • (1999) Can. J. Civ. Eng , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 6
    • 0034298548 scopus 로고    scopus 로고
    • A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff
    • Coulibaly, P., Anctil, F., Rasmussen, P. & Bobée, B. 2000 A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff. Hydrol. Process 14, 2755-2777.
    • (2000) Hydrol. Process , vol.14 , pp. 2755-2777
    • Coulibaly, P.1    Anctil, F.2    Rasmussen, P.3    Bobée, B.4
  • 7
    • 0034993945 scopus 로고    scopus 로고
    • ANN modeling of water table depth fluctuations
    • Coulibaly, P., Anctil, F., Aravena, R. & Bobée, B. 2001a ANN modeling of water table depth fluctuations. Water Res. Res. 37 (4), 885-896.
    • (2001) Water Res. Res , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 8
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., Anctil, F. & Bobée, B. 2001b Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Eng. ASCE 6 (5), 367-376.
    • (2001) J. Hydrol. Eng. ASCE , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 9
    • 26444574880 scopus 로고    scopus 로고
    • Downscaling precipitation and temperature with temporal neural networks
    • Coulibaly, P., Dibike, Y. B. & Anctil, F. 2005 Downscaling precipitation and temperature with temporal neural networks. J. Hydrometeorol. 6 (4), 483-496.
    • (2005) J. Hydrometeorol , vol.6 , Issue.4 , pp. 483-496
    • Coulibaly, P.1    Dibike, Y.B.2    Anctil, F.3
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. 2001 Hydrological modelling using artificial neural networks. Prog. in Phys. Geog. 25(1), 80-108.
    • (2001) Prog. in Phys. Geog , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 11
    • 0343449995 scopus 로고
    • A theory of neural networks with time delay
    • ed. J. E. Moody, R. P. Lippmann & D. S. Touretzky
    • de Vries, B. & Principe, J. C. 1991 A theory of neural networks with time delay. In Advances in Neural Information Processing Systems (ed. J. E. Moody, R. P. Lippmann & D. S. Touretzky), Vol. 3, pp. 162-168.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 162-168
    • de Vries, B.1    Principe, J.C.2
  • 12
    • 19744363846 scopus 로고    scopus 로고
    • Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models
    • Dibike, Y. B. & Coulibaly, P. 2005 Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J. Hydrol. 307, 145-163.
    • (2005) J. Hydrol , vol.307 , pp. 145-163
    • Dibike, Y.B.1    Coulibaly, P.2
  • 14
    • 0032650301 scopus 로고    scopus 로고
    • On the encapsulation of numerical-hydraulic models in artificial neural network
    • Dibike, Y. B., Solomatine, D. & Abbott, M. B. 1999 On the encapsulation of numerical-hydraulic models in artificial neural network. J. Hydraul. Res. 37 (2), 147-161.
    • (1999) J. Hydraul. Res , vol.37 , Issue.2 , pp. 147-161
    • Dibike, Y.B.1    Solomatine, D.2    Abbott, M.B.3
  • 15
    • 54449093620 scopus 로고    scopus 로고
    • Selection of input parameters for a hydrologic runoff model using a neural network
    • Iowa City, IA
    • Fuhnnan, D. R. & Minns, A. W. 2000 Selection of input parameters for a hydrologic runoff model using a neural network. In: Proc. Fourth Int. Conf. of Hydroinformatics, Iowa City, IA.
    • (2000) Proc. Fourth Int. Conf. of Hydroinformatics
    • Fuhnnan, D.R.1    Minns, A.W.2
  • 16
    • 0026905497 scopus 로고
    • Parameter uncertainty and simulation of design floods in Sweden
    • Harlin, J. & Kung, C-S. 1992 Parameter uncertainty and simulation of design floods in Sweden. J. Hydrol. 137, 209-230.
    • (1992) J. Hydrol , vol.137 , pp. 209-230
    • Harlin, J.1    Kung, C.-S.2
  • 17
    • 0034610407 scopus 로고    scopus 로고
    • Analysis of conceptual rainfall-runoff modelling performance in different climates
    • Liden, R. & Harlin, J. 2000 Analysis of conceptual rainfall-runoff modelling performance in different climates. J. Hydrol. 238, 231-247.
    • (2000) J. Hydrol , vol.238 , pp. 231-247
    • Liden, R.1    Harlin, J.2
  • 19
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Env. Model. Soft. 15(1), 101-123.
    • (2000) Env. Model. Soft , vol.15 , Issue.1 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 20
    • 54449088748 scopus 로고    scopus 로고
    • Martinec, J., Rango, A. & Roberts, R. 1994 The Snowmelt Runoff Model (SRM) User's Manual (ed. M. F. Baumgartner),. Geographica Bernensia, Department of Geography, University of Berne, Berne, Switzerland.
    • Martinec, J., Rango, A. & Roberts, R. 1994 The Snowmelt Runoff Model (SRM) User's Manual (ed. M. F. Baumgartner),. Geographica Bernensia, Department of Geography, University of Berne, Berne, Switzerland.
  • 21
    • 0348032131 scopus 로고    scopus 로고
    • A Synopsis and Comparison of Selected Snowmelt Algorithms
    • US Army Corps of Engineers, Hanover
    • Melloh, Rae A. 1999 A Synopsis and Comparison of Selected Snowmelt Algorithms. CRREL report, US Army Corps of Engineers, Hanover.
    • (1999) CRREL report
    • Melloh, R.A.1
  • 22
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neutral networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. 1996 Artificial neutral networks as rainfall-runoff models. Hydrol. Sci. J. 41 (3), 399-417.
    • (1996) Hydrol. Sci. J , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 23
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, I. A discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. 1970 River flow forecasting through conceptual models, I. A discussion of principles. J. Hydrol. 10, 282-290.
    • (1970) J. Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 25
    • 54449099218 scopus 로고    scopus 로고
    • See, L. M. & Kneale, P. E. 2004 Time delay neural networks for river level forecasting. In Neural Networks for Hydrological Modelling (ed. R. J. Abrahart, P. E. Kneale & L. M. See). Taylor & Francis, London, ch. 5.
    • See, L. M. & Kneale, P. E. 2004 Time delay neural networks for river level forecasting. In Neural Networks for Hydrological Modelling (ed. R. J. Abrahart, P. E. Kneale & L. M. See). Taylor & Francis, London, ch. 5.
  • 26
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah, K. & Deo, M. C. 2000 Hydrological forecasting using neural networks. J. Hydrol. Eng. ASCE 5 (2), 180-189.
    • (2000) J. Hydrol. Eng. ASCE , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 27
    • 0004017695 scopus 로고
    • Intercomparison of Models of Snowmelt Runoff
    • WMO, No. 23, WMO-No. 646 WMO, Geneva
    • WMO 1986 Intercomparison of Models of Snowmelt Runoff. Operational Hydrology Report No. 23, WMO-No. 646 WMO, Geneva.
    • (1986) Operational Hydrology Report
  • 28
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. 1999 Short term streamflow forecasting using artificial neural networks. J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 29
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watershed
    • Zhang, B. & Govindaraju, R. S. 2003 Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watershed. J. Hydrol. 273, 18-34.
    • (2003) J. Hydrol , vol.273 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.