메뉴 건너뛰기




Volumn , Issue , 2012, Pages 453-461

Towards heterogeneous temporal clinical event pattern discovery: A convolutional approach

Author keywords

convolution; nmf; pattern discovery

Indexed keywords

CLINICAL DECISION; CLINICAL RECORDS; EVENT PATTERN; EXPLORATORY ANALYSIS; MATRIX BASED REPRESENTATION; MEDICAL PRACTICE; MULTIPLICATIVE UPDATES; NMF; NONNEGATIVE MATRIX FACTORIZATION; PATIENT DATA; PATTERN DISCOVERY; SCALABILITY PROBLEMS; SHIFT INVARIANT; TEMPORAL PATTERN; TEMPORAL PATTERN DISCOVERY;

EID: 84866045813     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339605     Document Type: Conference Paper
Times cited : (82)

References (30)
  • 1
    • 79953799810 scopus 로고    scopus 로고
    • A temporal abstraction framework for classifying clinical temporal data
    • I. Batal, L. Sacchi, R. Bellazzi, and M. Hauskrecht. A temporal abstraction framework for classifying clinical temporal data. In AMIA, pages 29-33, 2009.
    • (2009) AMIA , pp. 29-33
    • Batal, I.1    Sacchi, L.2    Bellazzi, R.3    Hauskrecht, M.4
  • 3
  • 4
    • 33947593207 scopus 로고    scopus 로고
    • Video Segmentation via Temporal Pattern Classification
    • M. Cooper, T. Liu, and E. Rieffel. Video Segmentation via Temporal Pattern Classification. IEEE TMM, 9(3):610-618, 2007.
    • (2007) IEEE TMM , vol.9 , Issue.3 , pp. 610-618
    • Cooper, M.1    Liu, T.2    Rieffel, E.3
  • 5
    • 34248393105 scopus 로고    scopus 로고
    • First-order temporal pattern mining with regular expression constraints
    • S. de Amo and D. A. Furtado. First-order temporal pattern mining with regular expression constraints. Data & Knowledge Engineering, 62(3):401-420, 2007.
    • (2007) Data & Knowledge Engineering , vol.62 , Issue.3 , pp. 401-420
    • De Amo, S.1    Furtado, D.A.2
  • 6
    • 70350630561 scopus 로고    scopus 로고
    • Migration motif: A spatial - Temporal pattern mining approach for financial markets
    • X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. T. Jr. Migration motif: a spatial - temporal pattern mining approach for financial markets. In KDD, pages 1135-1144, 2009.
    • (2009) KDD , pp. 1135-1144
    • Du, X.1    Jin, R.2    Ding, L.3    Lee, V.E.4    T Jr., J.H.5
  • 7
    • 10944227316 scopus 로고    scopus 로고
    • Sparse coding and nmf
    • J. Eggert and E. Körner. Sparse coding and nmf. In IJCNN, pages 2529-2533, 2004.
    • (2004) IJCNN , pp. 2529-2533
    • Eggert, J.1    Körner, E.2
  • 10
    • 80053205731 scopus 로고    scopus 로고
    • Shift-invariant Sparse Coding for Audio Classification
    • R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant Sparse Coding for Audio Classification. In UAI, 2007.
    • (2007) UAI
    • Grosse, R.1    Raina, R.2    Kwong, H.3    Ng, A.Y.4
  • 11
    • 2442449952 scopus 로고    scopus 로고
    • Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach
    • J. Han, J. Pei, Y. Yin, and R. Mao. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. DMKD, 8(1):53-87, 2004.
    • (2004) DMKD , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 12
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. JMLR, 5:1457-1469, 2004.
    • (2004) JMLR , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 13
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 14
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for Non-negative Matrix Factorization
    • D. D. Lee and H. S. Seung. Algorithms for Non-negative Matrix Factorization. In NIPS 13, pages 556-562, 2001.
    • (2001) NIPS , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 34548085733 scopus 로고    scopus 로고
    • Efficient mining of understandable patterns from multivariate interval time series
    • F. Mörchen and A. Ultsch. Efficient mining of understandable patterns from multivariate interval time series. DMKD, 15(2):181-215, 2007.
    • (2007) DMKD , vol.15 , Issue.2 , pp. 181-215
    • Mörchen, F.1    Ultsch, A.2
  • 20
    • 81355127388 scopus 로고    scopus 로고
    • Temporal pattern discovery in longitudinal electronic patient records
    • G. Norén, J. Hopstadius, A. Bate, K. Star, and I. Edwards. Temporal pattern discovery in longitudinal electronic patient records. DMKD, 20(3):361-387, 2010.
    • (2010) DMKD , vol.20 , Issue.3 , pp. 361-387
    • Norén, G.1    Hopstadius, J.2    Bate, A.3    Star, K.4    Edwards, I.5
  • 21
    • 70350232529 scopus 로고    scopus 로고
    • Discovering convolutive speech phones using sparseness and non-negativity
    • P. D. O'Grady and B. A. Pearlmutter. Discovering convolutive speech phones using sparseness and non-negativity. In ICA, 2007.
    • (2007) ICA
    • O'Grady, P.D.1    Pearlmutter, B.A.2
  • 22
    • 13844256245 scopus 로고    scopus 로고
    • Mining sequential patterns by pattern-growth: The prefixspan approach
    • J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE TKDE, 16(11):1424-1440, 2004.
    • (2004) IEEE TKDE , vol.16 , Issue.11 , pp. 1424-1440
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Wang, J.4    Pinto, H.5    Chen, Q.6    Dayal, U.7    Hsu, M.8
  • 24
    • 79953787924 scopus 로고    scopus 로고
    • Medical temporal-knowledge discovery via temporal abstraction
    • M. Robert Moskovitch and Y. Shahar. Medical temporal-knowledge discovery via temporal abstraction. In AMIA, pages 452-456, 2009.
    • (2009) AMIA , pp. 452-456
    • Moskovitch, M.R.1    Shahar, Y.2
  • 25
    • 77955683121 scopus 로고    scopus 로고
    • Leveraging observational registries to inform comparative effectiveness research
    • B. R. Shah, J. Drozda, and E. D. Peterson. Leveraging observational registries to inform comparative effectiveness research. American Heart Journal, 160(1):8-15, 2010.
    • (2010) American Heart Journal , vol.160 , Issue.1 , pp. 8-15
    • Shah, B.R.1    Drozda, J.2    Peterson, E.D.3
  • 26
    • 35048843291 scopus 로고    scopus 로고
    • Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs
    • P. Smaragdis. Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs. In ICA, pages 494-499. 2004.
    • (2004) ICA , pp. 494-499
    • Smaragdis, P.1
  • 30
    • 0034826102 scopus 로고    scopus 로고
    • Spade: An efficient algorithm for mining frequent sequences
    • M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42:31-60, 2001.
    • (2001) Machine Learning , vol.42 , pp. 31-60
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.