-
1
-
-
0037076351
-
Identification of α-cellspecific insulin gene transcription factor RIPE3b1 as mammalian MafA
-
Olbrot M, Rud J, Moss LG, Sharma A. Identification of α-cellspecific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci USA. 2002;99:6737-6742.
-
(2002)
Proc Natl Acad Sci USA.
, vol.99
, pp. 6737-6742
-
-
Olbrot, M.1
Rud, J.2
Moss, L.G.3
Sharma, A.4
-
2
-
-
33646194560
-
A switch from MafB to MafA expression accompanies differentiation to pancreatic α-cells
-
Nishimura W, Kondo T, Salameh T, et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic α-cells. Dev Biol. 2006;293:526-539.
-
(2006)
Dev Biol.
, vol.293
, pp. 526-539
-
-
Nishimura, W.1
Kondo, T.2
Salameh, T.3
-
3
-
-
33644765957
-
MafB: An activator of the glucagon gene expressed in developing islet α-and β-cells
-
Artner I, Le Lay J, Hang Y, et al. MafB: an activator of the glucagon gene expressed in developing islet α-and β-cells. Diabetes. 2006; 55:297-304.
-
(2006)
Diabetes.
, vol.55
, pp. 297-304
-
-
Artner, I.1
le Lay, J.2
Hang, Y.3
-
4
-
-
20344368579
-
MafA is a key regulator of glucose-stimulated insulin secretion
-
Zhang C, Moriguchi T, Kajihara M, et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. 2005;25: 4969-4976.
-
(2005)
Mol Cell Biol.
, vol.25
, pp. 4969-4976
-
-
Zhang, C.1
Moriguchi, T.2
Kajihara, M.3
-
5
-
-
77957583357
-
MafA and MafB regulate genes critical to β-cells in a unique temporal manner
-
Artner I, Hang Y, Mazur M, et al. MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes. 2010;59: 2530-2539.
-
(2010)
Diabetes.
, vol.59
, pp. 2530-2539
-
-
Artner, I.1
Hang, Y.2
Mazur, M.3
-
6
-
-
67749133514
-
p38 MAPK is a major regulator of MafA protein stability under oxidative stress
-
Kondo T, El Khattabi I, Nishimura W, et al. p38 MAPK is a major regulator of MafA protein stability under oxidative stress. Mol Endocrinol. 2009;23:1281-1290.
-
(2009)
Mol Endocrinol.
, vol.23
, pp. 1281-1290
-
-
Kondo, T.1
El Khattabi, I.2
Nishimura, W.3
-
7
-
-
70350314822
-
β-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice
-
Harmon JS, Bogdani M, Parazzoli SD, et al. β-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology. 2009;150: 4855-4862.
-
(2009)
Endocrinology.
, vol.150
, pp. 4855-4862
-
-
Harmon, J.S.1
Bogdani, M.2
Parazzoli, S.D.3
-
8
-
-
84867578003
-
β-Cell nuclear musculoaponeurotic fibrosarcoma oncogene family A (MafA) is deficient in type 2 diabetes
-
Butler AE, Robertson RP, Hernandez R, Matveyenko AV, Gurlo T, Butler PC. β-Cell nuclear musculoaponeurotic fibrosarcoma oncogene family A (MafA) is deficient in type 2 diabetes. Diabetologia. 2012;55:2985-2988.
-
(2012)
Diabetologia.
, vol.55
, pp. 2985-2988
-
-
Butler, A.E.1
Robertson, R.P.2
Hernandez, R.3
Matveyenko, A.V.4
Gurlo, T.5
Butler, P.C.6
-
9
-
-
33750846133
-
Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells
-
D'Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392-1401.
-
(2006)
Nat Biotechnol.
, vol.24
, pp. 1392-1401
-
-
D'Amour, K.A.1
Bang, A.G.2
Eliazer, S.3
-
10
-
-
41849151748
-
Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo
-
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26: 443-452.
-
(2008)
Nat Biotechnol.
, vol.26
, pp. 443-452
-
-
Kroon, E.1
Martinson, L.A.2
Kadoya, K.3
-
11
-
-
34447124165
-
MAFA controls genes implicated in insulin biosynthesis and secretion
-
Wang H, Brun T, Kataoka K, Sharma AJ, Wollheim CB. MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia. 2007;50:348-358.
-
(2007)
Diabetologia.
, vol.50
, pp. 348-358
-
-
Wang, H.1
Brun, T.2
Kataoka, K.3
Sharma, A.J.4
Wollheim, C.B.5
-
12
-
-
79953756654
-
Mafa expression enhances glucose-responsive insulin secretion in neonatal rat β cells
-
Aguayo-Mazzucato C, Koh A, El Khattabi I, et al. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat β cells. Diabetologia. 2011;54:583-593.
-
(2011)
Diabetologia.
, vol.54
, pp. 583-593
-
-
Aguayo-Mazzucato, C.1
Koh, A.2
El Khattabi, I.3
-
13
-
-
0026472989
-
Glucose-induced insulin release in islets of young rats: Time-dependent potentiation and effects of 2-bromostearate
-
Bliss CR, Sharp GW. Glucose-induced insulin release in islets of young rats: time-dependent potentiation and effects of 2-bromostearate. Am J Physiol. 1992;263:E890-E896.
-
(1992)
Am J Physiol.
, vol.263
-
-
Bliss, C.R.1
Sharp, G.W.2
-
14
-
-
34748860815
-
MafA stability in pancreatic β cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3
-
Han SI, Aramata S, Yasuda K, Kataoka K. MafA stability in pancreatic β cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol Cell Biol. 2007;27:6593-6605.
-
(2007)
Mol Cell Biol.
, vol.27
, pp. 6593-6605
-
-
Han, S.I.1
Aramata, S.2
Yasuda, K.3
Kataoka, K.4
-
15
-
-
36249022250
-
GSK-3-mediated phosphorylation enhances Maf-transforming activity
-
Rocques N, Abou Zeid N, Sii-Felice K, et al. GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol Cell. 2007; 28:584-597.
-
(2007)
Mol Cell.
, vol.28
, pp. 584-597
-
-
Rocques, N.1
Abou Zeid, N.2
Sii-Felice, K.3
-
16
-
-
0034954810
-
Phosphorylation of MafA is essential for its transcriptional and biological properties
-
Benkhelifa S, Provot S, Nabais E, Eychene A, Calothy G, Felder-Schmittbuhl MP. Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol Cell Biol. 2001;21:4441-4452.
-
(2001)
Mol Cell Biol.
, vol.21
, pp. 4441-4452
-
-
Benkhelifa, S.1
Provot, S.2
Nabais, E.3
Eychene, A.4
Calothy, G.5
Felder-Schmittbuhl, M.P.6
-
17
-
-
0037414828
-
The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation
-
Ochi H, Ogino H, Kageyama Y, Yasuda K. The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation. J Biol Chem. 2003;278:537-544.
-
(2003)
J Biol Chem.
, vol.278
, pp. 537-544
-
-
Ochi, H.1
Ogino, H.2
Kageyama, Y.3
Yasuda, K.4
-
18
-
-
21244505861
-
MafA transcription factor is phosphorylated by p38MAPkinase
-
Sii-Felice K, Pouponnot C, Gillet S, et al. MafA transcription factor is phosphorylated by p38MAPkinase. FEBS Lett. 2005;579:3547-3554.
-
(2005)
FEBS Lett.
, vol.579
, pp. 3547-3554
-
-
Sii-Felice, K.1
Pouponnot, C.2
Gillet, S.3
-
19
-
-
59449096540
-
The stability and transactivation potential of the mammalian MafA transcription factor are regulated by serine 65 phosphorylation
-
Guo S, Burnette R, Zhao L, et al. The stability and transactivation potential of the mammalian MafA transcription factor are regulated by serine 65 phosphorylation. J Biol Chem. 2009;284:759-765.
-
(2009)
J Biol Chem.
, vol.284
, pp. 759-765
-
-
Guo, S.1
Burnette, R.2
Zhao, L.3
-
20
-
-
0031939753
-
Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogenactivated protein kinase family
-
Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogenactivated protein kinase family. J Biol Chem. 1998;273:2161-2168.
-
(1998)
J Biol Chem.
, vol.273
, pp. 2161-2168
-
-
Wang, Y.1
Huang, S.2
Sah, V.P.3
-
21
-
-
80054084143
-
Proteasome activator PA28γ stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA
-
Kanai K, Aramata S, Katakami S, Yasuda K, Kataoka K. Proteasome activator PA28γ stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA. J Mol Endocrinol. 2011;47:119-127.
-
(2011)
J Mol Endocrinol.
, vol.47
, pp. 119-127
-
-
Kanai, K.1
Aramata, S.2
Katakami, S.3
Yasuda, K.4
Kataoka, K.5
-
22
-
-
58249087541
-
Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis
-
Sumara G, Formentini I, Collins S, et al. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell. 2009;136:235-248.
-
(2009)
Cell.
, vol.136
, pp. 235-248
-
-
Sumara, G.1
Formentini, I.2
Collins, S.3
-
23
-
-
84855181568
-
Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus
-
doi:10.1155/2012/703538
-
Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;1-11. doi:10.1155/2012/703538.
-
(2012)
Exp Diabetes Res.
, pp. 1-11
-
-
Ma, Z.A.1
Zhao, Z.2
Turk, J.3
-
24
-
-
77953307362
-
Oxidative stress, nitric oxide, and diabetes
-
Pitocco D, Zaccardi F, Di Stasio E, et al. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud. 2010;7:15-25.
-
(2010)
Rev Diabet Stud.
, vol.7
, pp. 15-25
-
-
Pitocco, D.1
Zaccardi, F.2
di Stasio, E.3
-
25
-
-
0028786096
-
Elevated levels of authentic plasma hydroperoxides in NIDDM
-
Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, Betteridge DJ, Wolff SP. Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes. 1995;44:1054-1058.
-
(1995)
Diabetes.
, vol.44
, pp. 1054-1058
-
-
Nourooz-Zadeh, J.1
Tajaddini-Sarmadi, J.2
McCarthy, S.3
Betteridge, D.J.4
Wolff, S.P.5
-
26
-
-
0032863183
-
Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants
-
Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci USA. 1999;96: 10857-10862.
-
(1999)
Proc Natl Acad Sci USA.
, vol.96
, pp. 10857-10862
-
-
Tanaka, Y.1
Gleason, C.E.2
Tran, P.O.3
Harmon, J.S.4
Robertson, R.P.5
-
27
-
-
36148988058
-
Transgenic expression of antioxidant protein thioredoxin in pancreatic β cells prevents progression of type 2 diabetes mellitus
-
Yamamoto M, Yamato E, Toyoda S, et al. Transgenic expression of antioxidant protein thioredoxin in pancreatic β cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal. 2008; 10:43-49.
-
(2008)
Antioxid Redox Signal.
, vol.10
, pp. 43-49
-
-
Yamamoto, M.1
Yamato, E.2
Toyoda, S.3
-
28
-
-
0033011595
-
Targeting of p38 mitogenactivated protein kinases to MEF2 transcription factors
-
Yang SH, Galanis A, Sharrocks AD. Targeting of p38 mitogenactivated protein kinases to MEF2 transcription factors. Mol Cell Biol. 1999;19:4028-4038.
-
(1999)
Mol Cell Biol.
, vol.19
, pp. 4028-4038
-
-
Yang, S.H.1
Galanis, A.2
Sharrocks, A.D.3
-
29
-
-
0029807306
-
Differential activation of mitogen-activated protein kinases by nitric oxide-related species
-
Lander HM, Jacovina AT, Davis RJ, Tauras JM. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem. 1996;271:19705-19709.
-
(1996)
J Biol Chem.
, vol.271
, pp. 19705-19709
-
-
Lander, H.M.1
Jacovina, A.T.2
Davis, R.J.3
Tauras, J.M.4
-
30
-
-
0033559716
-
Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA
-
Klotz LO, Pellieux C, Briviba K, Pierlot C, Aubry JM, Sies H. Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA. Eur J Biochem. 1999;260:917-922.
-
(1999)
Eur J Biochem.
, vol.260
, pp. 917-922
-
-
Klotz, L.O.1
Pellieux, C.2
Briviba, K.3
Pierlot, C.4
Aubry, J.M.5
Sies, H.6
-
31
-
-
0030049439
-
Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury
-
Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996;271:4138-4142.
-
(1996)
J Biol Chem.
, vol.271
, pp. 4138-4142
-
-
Guyton, K.Z.1
Liu, Y.2
Gorospe, M.3
Xu, Q.4
Holbrook, N.J.5
-
32
-
-
34248200476
-
Crystal structure of the p38α-MAPKAP kinase 2 heterodimer
-
ter Haar E, Prabhakar P, Prabakhar P, Liu X, Lepre C. Crystal structure of the p38α-MAPKAP kinase 2 heterodimer. J Biol Chem. 2007;282:9733-9739.
-
(2007)
J Biol Chem.
, vol.282
, pp. 9733-9739
-
-
ter Haar, E.1
Prabhakar, P.2
Prabakhar, P.3
Liu, X.4
Lepre, C.5
-
33
-
-
6344240450
-
P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation
-
Casanovas O, Jaumot M, Paules AB, Agell N, Bachs O. P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene. 2004;23:7537-7544.
-
(2004)
Oncogene.
, vol.23
, pp. 7537-7544
-
-
Casanovas, O.1
Jaumot, M.2
Paules, A.B.3
Agell, N.4
Bachs, O.5
-
34
-
-
70349338906
-
Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes
-
Markou T, Dowling AA, Kelly T, Lazou A. Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes. Free Radic Res. 2009;43:809-816.
-
(2009)
Free Radic Res.
, vol.43
, pp. 809-816
-
-
Markou, T.1
Dowling, A.A.2
Kelly, T.3
Lazou, A.4
-
35
-
-
79959475154
-
Stability of F-box protein atrogin-1 is regulated by p38 mitogen-activated protein kinase pathway in cardiac H9c2 cells
-
Li JJ, Zhang TP, Meng Y, Du J, Li HH. Stability of F-box protein atrogin-1 is regulated by p38 mitogen-activated protein kinase pathway in cardiac H9c2 cells. Cell Physiol Biochem. 2011;27: 463-470.
-
(2011)
Cell Physiol Biochem.
, vol.27
, pp. 463-470
-
-
Li, J.J.1
Zhang, T.P.2
Meng, Y.3
du, J.4
Li, H.H.5
-
36
-
-
79957883313
-
Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness
-
Hong J, Zhou J, Fu J, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71:3980-3990.
-
(2011)
Cancer Res.
, vol.71
, pp. 3980-3990
-
-
Hong, J.1
Zhou, J.2
Fu, J.3
-
37
-
-
44649095826
-
Proteasome activation by hepatitis C core protein is reversed by ethanol-induced oxidative stress
-
Osna NA, White RL, Krutik VM, Wang T, Weinman SA, Donohue TMJr. Proteasome activation by hepatitis C core protein is reversed by ethanol-induced oxidative stress. Gastroenterology. 2008;134: 2144-2152.
-
(2008)
Gastroenterology.
, vol.134
, pp. 2144-2152
-
-
Osna, N.A.1
White, R.L.2
Krutik, V.M.3
Wang, T.4
Weinman, S.A.5
Donohue Jr., T.M.6
-
38
-
-
67649933397
-
Fbw7 promotes ubiquitin-dependent degradation of c-Myb: Involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb
-
Kitagawa K, Hiramatsu Y, Uchida C, et al. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene. 2009;28:2393-2405.
-
(2009)
Oncogene.
, vol.28
, pp. 2393-2405
-
-
Kitagawa, K.1
Hiramatsu, Y.2
Uchida, C.3
-
39
-
-
84859430011
-
Fbxw7α-and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma
-
Busino L, Millman SE, Scotto L, et al. Fbxw7α-and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol. 2012;14:375-385.
-
(2012)
Nat Cell Biol.
, vol.14
, pp. 375-385
-
-
Busino, L.1
Millman, S.E.2
Scotto, L.3
-
40
-
-
84055178152
-
Targeted polyubiquitylation of RASSF1C by the Mule and SCFβ-TrCP ligases in response to DNA damage
-
Zhou X, Li TT, Feng X, et al. Targeted polyubiquitylation of RASSF1C by the Mule and SCFβ-TrCP ligases in response to DNA damage. Biochem J. 2012;441:227-236.
-
(2012)
Biochem J.
, vol.441
, pp. 227-236
-
-
Zhou, X.1
Li, T.T.2
Feng, X.3
-
41
-
-
77449137887
-
Modulation of SCF β-TrCP-dependent I κB α ubiquitination by hydrogen peroxide
-
Banerjee S, Zmijewski JW, Lorne E, Liu G, Sha Y, Abraham E. Modulation of SCF β-TrCP-dependent I κB α ubiquitination by hydrogen peroxide. J Biol Chem. 2010;285:2665-2675.
-
(2010)
J Biol Chem.
, vol.285
, pp. 2665-2675
-
-
Banerjee, S.1
Zmijewski, J.W.2
Lorne, E.3
Liu, G.4
Sha, Y.5
Abraham, E.6
-
42
-
-
67650230896
-
Wnt/β-catenin signaling: Components, mechanisms, and diseases
-
MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9-26.
-
(2009)
Dev Cell.
, vol.17
, pp. 9-26
-
-
MacDonald, B.T.1
Tamai, K.2
He, X.3
-
43
-
-
74849138924
-
Regulation of protein stability by GSK3 mediated phosphorylation
-
Xu C, Kim NG, Gumbiner BM. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle. 2009;8:4032-4039.
-
(2009)
Cell Cycle.
, vol.8
, pp. 4032-4039
-
-
Xu, C.1
Kim, N.G.2
Gumbiner, B.M.3
-
44
-
-
0035947080
-
Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses
-
Matsuzawa SI, Reed JC. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol Cell. 2001;7:915-926.
-
(2001)
Mol Cell.
, vol.7
, pp. 915-926
-
-
Matsuzawa, S.I.1
Reed, J.C.2
-
45
-
-
0043032524
-
Adenomatous polyposis coli (APC)-independent regulation of β-catenin degradation via a retinoid X receptor-mediated pathway
-
Xiao JH, Ghosn C, Hinchman C, et al. Adenomatous polyposis coli (APC)-independent regulation of β-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem. 2003;278: 29954-29962.
-
(2003)
J Biol Chem.
, vol.278
, pp. 29954-29962
-
-
Xiao, J.H.1
Ghosn, C.2
Hinchman, C.3
-
46
-
-
33644861713
-
Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis
-
Nishitani H, Sugimoto N, Roukos V, et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J. 2006;25:1126-1136.
-
(2006)
EMBO J.
, vol.25
, pp. 1126-1136
-
-
Nishitani, H.1
Sugimoto, N.2
Roukos, V.3
-
47
-
-
77955059513
-
Mechanisms and functions of p38 MAPK signalling
-
Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403-417.
-
(2010)
Biochem J.
, vol.429
, pp. 403-417
-
-
Cuadrado, A.1
Nebreda, A.R.2
-
48
-
-
30044444610
-
Role of MKK3 and p38 MAPK in cytokine-induced death of insulin-producing cells
-
Makeeva N, Myers JW, Welsh N. Role of MKK3 and p38 MAPK in cytokine-induced death of insulin-producing cells. Biochem J. 2006;393:129-139.
-
(2006)
Biochem J.
, vol.393
, pp. 129-139
-
-
Makeeva, N.1
Myers, J.W.2
Welsh, N.3
-
50
-
-
0028027308
-
Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain
-
Treier M, Staszewski LM, Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain. Cell. 1994;78: 787-798.
-
(1994)
Cell.
, vol.78
, pp. 787-798
-
-
Treier, M.1
Staszewski, L.M.2
Bohmann, D.3
-
51
-
-
0035808433
-
Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression
-
Harrington RH, Sharma A. Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression. J Biol Chem. 2001;276:104-113.
-
(2001)
J Biol Chem.
, vol.276
, pp. 104-113
-
-
Harrington, R.H.1
Sharma, A.2
-
52
-
-
26244439281
-
Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment
-
King A, Lock J, Xu G, Bonner-Weir S, Weir GC. Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment. Diabetologia. 2005;48:2074-2079.
-
(2005)
Diabetologia.
, vol.48
, pp. 2074-2079
-
-
King, A.1
Lock, J.2
Xu, G.3
Bonner-Weir, S.4
Weir, G.C.5
|