메뉴 건너뛰기




Volumn 27, Issue 7, 2013, Pages 1078-1090

Preventing p38 MAPK-mediated MafA degradation ameliorates β-Cell dysfunction under oxidative stress

Author keywords

[No Author keywords available]

Indexed keywords

GLYCOGEN SYNTHASE KINASE 3; INSULIN; MITOGEN ACTIVATED PROTEIN KINASE P38; PROTEIN KINASE D; THREONINE; TRANSCRIPTION FACTOR MAFA;

EID: 84879466892     PISSN: 08888809     EISSN: None     Source Type: Journal    
DOI: 10.1210/me.2012-1346     Document Type: Article
Times cited : (22)

References (52)
  • 1
    • 0037076351 scopus 로고    scopus 로고
    • Identification of α-cellspecific insulin gene transcription factor RIPE3b1 as mammalian MafA
    • Olbrot M, Rud J, Moss LG, Sharma A. Identification of α-cellspecific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci USA. 2002;99:6737-6742.
    • (2002) Proc Natl Acad Sci USA. , vol.99 , pp. 6737-6742
    • Olbrot, M.1    Rud, J.2    Moss, L.G.3    Sharma, A.4
  • 2
    • 33646194560 scopus 로고    scopus 로고
    • A switch from MafB to MafA expression accompanies differentiation to pancreatic α-cells
    • Nishimura W, Kondo T, Salameh T, et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic α-cells. Dev Biol. 2006;293:526-539.
    • (2006) Dev Biol. , vol.293 , pp. 526-539
    • Nishimura, W.1    Kondo, T.2    Salameh, T.3
  • 3
    • 33644765957 scopus 로고    scopus 로고
    • MafB: An activator of the glucagon gene expressed in developing islet α-and β-cells
    • Artner I, Le Lay J, Hang Y, et al. MafB: an activator of the glucagon gene expressed in developing islet α-and β-cells. Diabetes. 2006; 55:297-304.
    • (2006) Diabetes. , vol.55 , pp. 297-304
    • Artner, I.1    le Lay, J.2    Hang, Y.3
  • 4
    • 20344368579 scopus 로고    scopus 로고
    • MafA is a key regulator of glucose-stimulated insulin secretion
    • Zhang C, Moriguchi T, Kajihara M, et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol. 2005;25: 4969-4976.
    • (2005) Mol Cell Biol. , vol.25 , pp. 4969-4976
    • Zhang, C.1    Moriguchi, T.2    Kajihara, M.3
  • 5
    • 77957583357 scopus 로고    scopus 로고
    • MafA and MafB regulate genes critical to β-cells in a unique temporal manner
    • Artner I, Hang Y, Mazur M, et al. MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes. 2010;59: 2530-2539.
    • (2010) Diabetes. , vol.59 , pp. 2530-2539
    • Artner, I.1    Hang, Y.2    Mazur, M.3
  • 6
    • 67749133514 scopus 로고    scopus 로고
    • p38 MAPK is a major regulator of MafA protein stability under oxidative stress
    • Kondo T, El Khattabi I, Nishimura W, et al. p38 MAPK is a major regulator of MafA protein stability under oxidative stress. Mol Endocrinol. 2009;23:1281-1290.
    • (2009) Mol Endocrinol. , vol.23 , pp. 1281-1290
    • Kondo, T.1    El Khattabi, I.2    Nishimura, W.3
  • 7
    • 70350314822 scopus 로고    scopus 로고
    • β-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice
    • Harmon JS, Bogdani M, Parazzoli SD, et al. β-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology. 2009;150: 4855-4862.
    • (2009) Endocrinology. , vol.150 , pp. 4855-4862
    • Harmon, J.S.1    Bogdani, M.2    Parazzoli, S.D.3
  • 8
    • 84867578003 scopus 로고    scopus 로고
    • β-Cell nuclear musculoaponeurotic fibrosarcoma oncogene family A (MafA) is deficient in type 2 diabetes
    • Butler AE, Robertson RP, Hernandez R, Matveyenko AV, Gurlo T, Butler PC. β-Cell nuclear musculoaponeurotic fibrosarcoma oncogene family A (MafA) is deficient in type 2 diabetes. Diabetologia. 2012;55:2985-2988.
    • (2012) Diabetologia. , vol.55 , pp. 2985-2988
    • Butler, A.E.1    Robertson, R.P.2    Hernandez, R.3    Matveyenko, A.V.4    Gurlo, T.5    Butler, P.C.6
  • 9
    • 33750846133 scopus 로고    scopus 로고
    • Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells
    • D'Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392-1401.
    • (2006) Nat Biotechnol. , vol.24 , pp. 1392-1401
    • D'Amour, K.A.1    Bang, A.G.2    Eliazer, S.3
  • 10
    • 41849151748 scopus 로고    scopus 로고
    • Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo
    • Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26: 443-452.
    • (2008) Nat Biotechnol. , vol.26 , pp. 443-452
    • Kroon, E.1    Martinson, L.A.2    Kadoya, K.3
  • 11
    • 34447124165 scopus 로고    scopus 로고
    • MAFA controls genes implicated in insulin biosynthesis and secretion
    • Wang H, Brun T, Kataoka K, Sharma AJ, Wollheim CB. MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia. 2007;50:348-358.
    • (2007) Diabetologia. , vol.50 , pp. 348-358
    • Wang, H.1    Brun, T.2    Kataoka, K.3    Sharma, A.J.4    Wollheim, C.B.5
  • 12
    • 79953756654 scopus 로고    scopus 로고
    • Mafa expression enhances glucose-responsive insulin secretion in neonatal rat β cells
    • Aguayo-Mazzucato C, Koh A, El Khattabi I, et al. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat β cells. Diabetologia. 2011;54:583-593.
    • (2011) Diabetologia. , vol.54 , pp. 583-593
    • Aguayo-Mazzucato, C.1    Koh, A.2    El Khattabi, I.3
  • 13
    • 0026472989 scopus 로고
    • Glucose-induced insulin release in islets of young rats: Time-dependent potentiation and effects of 2-bromostearate
    • Bliss CR, Sharp GW. Glucose-induced insulin release in islets of young rats: time-dependent potentiation and effects of 2-bromostearate. Am J Physiol. 1992;263:E890-E896.
    • (1992) Am J Physiol. , vol.263
    • Bliss, C.R.1    Sharp, G.W.2
  • 14
    • 34748860815 scopus 로고    scopus 로고
    • MafA stability in pancreatic β cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3
    • Han SI, Aramata S, Yasuda K, Kataoka K. MafA stability in pancreatic β cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol Cell Biol. 2007;27:6593-6605.
    • (2007) Mol Cell Biol. , vol.27 , pp. 6593-6605
    • Han, S.I.1    Aramata, S.2    Yasuda, K.3    Kataoka, K.4
  • 15
    • 36249022250 scopus 로고    scopus 로고
    • GSK-3-mediated phosphorylation enhances Maf-transforming activity
    • Rocques N, Abou Zeid N, Sii-Felice K, et al. GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol Cell. 2007; 28:584-597.
    • (2007) Mol Cell. , vol.28 , pp. 584-597
    • Rocques, N.1    Abou Zeid, N.2    Sii-Felice, K.3
  • 17
    • 0037414828 scopus 로고    scopus 로고
    • The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation
    • Ochi H, Ogino H, Kageyama Y, Yasuda K. The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation. J Biol Chem. 2003;278:537-544.
    • (2003) J Biol Chem. , vol.278 , pp. 537-544
    • Ochi, H.1    Ogino, H.2    Kageyama, Y.3    Yasuda, K.4
  • 18
    • 21244505861 scopus 로고    scopus 로고
    • MafA transcription factor is phosphorylated by p38MAPkinase
    • Sii-Felice K, Pouponnot C, Gillet S, et al. MafA transcription factor is phosphorylated by p38MAPkinase. FEBS Lett. 2005;579:3547-3554.
    • (2005) FEBS Lett. , vol.579 , pp. 3547-3554
    • Sii-Felice, K.1    Pouponnot, C.2    Gillet, S.3
  • 19
    • 59449096540 scopus 로고    scopus 로고
    • The stability and transactivation potential of the mammalian MafA transcription factor are regulated by serine 65 phosphorylation
    • Guo S, Burnette R, Zhao L, et al. The stability and transactivation potential of the mammalian MafA transcription factor are regulated by serine 65 phosphorylation. J Biol Chem. 2009;284:759-765.
    • (2009) J Biol Chem. , vol.284 , pp. 759-765
    • Guo, S.1    Burnette, R.2    Zhao, L.3
  • 20
    • 0031939753 scopus 로고    scopus 로고
    • Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogenactivated protein kinase family
    • Wang Y, Huang S, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogenactivated protein kinase family. J Biol Chem. 1998;273:2161-2168.
    • (1998) J Biol Chem. , vol.273 , pp. 2161-2168
    • Wang, Y.1    Huang, S.2    Sah, V.P.3
  • 21
    • 80054084143 scopus 로고    scopus 로고
    • Proteasome activator PA28γ stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA
    • Kanai K, Aramata S, Katakami S, Yasuda K, Kataoka K. Proteasome activator PA28γ stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA. J Mol Endocrinol. 2011;47:119-127.
    • (2011) J Mol Endocrinol. , vol.47 , pp. 119-127
    • Kanai, K.1    Aramata, S.2    Katakami, S.3    Yasuda, K.4    Kataoka, K.5
  • 22
    • 58249087541 scopus 로고    scopus 로고
    • Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis
    • Sumara G, Formentini I, Collins S, et al. Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. Cell. 2009;136:235-248.
    • (2009) Cell. , vol.136 , pp. 235-248
    • Sumara, G.1    Formentini, I.2    Collins, S.3
  • 23
    • 84855181568 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus
    • doi:10.1155/2012/703538
    • Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;1-11. doi:10.1155/2012/703538.
    • (2012) Exp Diabetes Res. , pp. 1-11
    • Ma, Z.A.1    Zhao, Z.2    Turk, J.3
  • 26
    • 0032863183 scopus 로고    scopus 로고
    • Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants
    • Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci USA. 1999;96: 10857-10862.
    • (1999) Proc Natl Acad Sci USA. , vol.96 , pp. 10857-10862
    • Tanaka, Y.1    Gleason, C.E.2    Tran, P.O.3    Harmon, J.S.4    Robertson, R.P.5
  • 27
    • 36148988058 scopus 로고    scopus 로고
    • Transgenic expression of antioxidant protein thioredoxin in pancreatic β cells prevents progression of type 2 diabetes mellitus
    • Yamamoto M, Yamato E, Toyoda S, et al. Transgenic expression of antioxidant protein thioredoxin in pancreatic β cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal. 2008; 10:43-49.
    • (2008) Antioxid Redox Signal. , vol.10 , pp. 43-49
    • Yamamoto, M.1    Yamato, E.2    Toyoda, S.3
  • 28
    • 0033011595 scopus 로고    scopus 로고
    • Targeting of p38 mitogenactivated protein kinases to MEF2 transcription factors
    • Yang SH, Galanis A, Sharrocks AD. Targeting of p38 mitogenactivated protein kinases to MEF2 transcription factors. Mol Cell Biol. 1999;19:4028-4038.
    • (1999) Mol Cell Biol. , vol.19 , pp. 4028-4038
    • Yang, S.H.1    Galanis, A.2    Sharrocks, A.D.3
  • 29
    • 0029807306 scopus 로고    scopus 로고
    • Differential activation of mitogen-activated protein kinases by nitric oxide-related species
    • Lander HM, Jacovina AT, Davis RJ, Tauras JM. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem. 1996;271:19705-19709.
    • (1996) J Biol Chem. , vol.271 , pp. 19705-19709
    • Lander, H.M.1    Jacovina, A.T.2    Davis, R.J.3    Tauras, J.M.4
  • 30
    • 0033559716 scopus 로고    scopus 로고
    • Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA
    • Klotz LO, Pellieux C, Briviba K, Pierlot C, Aubry JM, Sies H. Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA. Eur J Biochem. 1999;260:917-922.
    • (1999) Eur J Biochem. , vol.260 , pp. 917-922
    • Klotz, L.O.1    Pellieux, C.2    Briviba, K.3    Pierlot, C.4    Aubry, J.M.5    Sies, H.6
  • 31
    • 0030049439 scopus 로고    scopus 로고
    • Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury
    • Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996;271:4138-4142.
    • (1996) J Biol Chem. , vol.271 , pp. 4138-4142
    • Guyton, K.Z.1    Liu, Y.2    Gorospe, M.3    Xu, Q.4    Holbrook, N.J.5
  • 33
    • 6344240450 scopus 로고    scopus 로고
    • P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation
    • Casanovas O, Jaumot M, Paules AB, Agell N, Bachs O. P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene. 2004;23:7537-7544.
    • (2004) Oncogene. , vol.23 , pp. 7537-7544
    • Casanovas, O.1    Jaumot, M.2    Paules, A.B.3    Agell, N.4    Bachs, O.5
  • 34
    • 70349338906 scopus 로고    scopus 로고
    • Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes
    • Markou T, Dowling AA, Kelly T, Lazou A. Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes. Free Radic Res. 2009;43:809-816.
    • (2009) Free Radic Res. , vol.43 , pp. 809-816
    • Markou, T.1    Dowling, A.A.2    Kelly, T.3    Lazou, A.4
  • 35
    • 79959475154 scopus 로고    scopus 로고
    • Stability of F-box protein atrogin-1 is regulated by p38 mitogen-activated protein kinase pathway in cardiac H9c2 cells
    • Li JJ, Zhang TP, Meng Y, Du J, Li HH. Stability of F-box protein atrogin-1 is regulated by p38 mitogen-activated protein kinase pathway in cardiac H9c2 cells. Cell Physiol Biochem. 2011;27: 463-470.
    • (2011) Cell Physiol Biochem. , vol.27 , pp. 463-470
    • Li, J.J.1    Zhang, T.P.2    Meng, Y.3    du, J.4    Li, H.H.5
  • 36
    • 79957883313 scopus 로고    scopus 로고
    • Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness
    • Hong J, Zhou J, Fu J, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71:3980-3990.
    • (2011) Cancer Res. , vol.71 , pp. 3980-3990
    • Hong, J.1    Zhou, J.2    Fu, J.3
  • 37
  • 38
    • 67649933397 scopus 로고    scopus 로고
    • Fbw7 promotes ubiquitin-dependent degradation of c-Myb: Involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb
    • Kitagawa K, Hiramatsu Y, Uchida C, et al. Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene. 2009;28:2393-2405.
    • (2009) Oncogene. , vol.28 , pp. 2393-2405
    • Kitagawa, K.1    Hiramatsu, Y.2    Uchida, C.3
  • 39
    • 84859430011 scopus 로고    scopus 로고
    • Fbxw7α-and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma
    • Busino L, Millman SE, Scotto L, et al. Fbxw7α-and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol. 2012;14:375-385.
    • (2012) Nat Cell Biol. , vol.14 , pp. 375-385
    • Busino, L.1    Millman, S.E.2    Scotto, L.3
  • 40
    • 84055178152 scopus 로고    scopus 로고
    • Targeted polyubiquitylation of RASSF1C by the Mule and SCFβ-TrCP ligases in response to DNA damage
    • Zhou X, Li TT, Feng X, et al. Targeted polyubiquitylation of RASSF1C by the Mule and SCFβ-TrCP ligases in response to DNA damage. Biochem J. 2012;441:227-236.
    • (2012) Biochem J. , vol.441 , pp. 227-236
    • Zhou, X.1    Li, T.T.2    Feng, X.3
  • 41
    • 77449137887 scopus 로고    scopus 로고
    • Modulation of SCF β-TrCP-dependent I κB α ubiquitination by hydrogen peroxide
    • Banerjee S, Zmijewski JW, Lorne E, Liu G, Sha Y, Abraham E. Modulation of SCF β-TrCP-dependent I κB α ubiquitination by hydrogen peroxide. J Biol Chem. 2010;285:2665-2675.
    • (2010) J Biol Chem. , vol.285 , pp. 2665-2675
    • Banerjee, S.1    Zmijewski, J.W.2    Lorne, E.3    Liu, G.4    Sha, Y.5    Abraham, E.6
  • 42
    • 67650230896 scopus 로고    scopus 로고
    • Wnt/β-catenin signaling: Components, mechanisms, and diseases
    • MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9-26.
    • (2009) Dev Cell. , vol.17 , pp. 9-26
    • MacDonald, B.T.1    Tamai, K.2    He, X.3
  • 43
    • 74849138924 scopus 로고    scopus 로고
    • Regulation of protein stability by GSK3 mediated phosphorylation
    • Xu C, Kim NG, Gumbiner BM. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle. 2009;8:4032-4039.
    • (2009) Cell Cycle. , vol.8 , pp. 4032-4039
    • Xu, C.1    Kim, N.G.2    Gumbiner, B.M.3
  • 44
    • 0035947080 scopus 로고    scopus 로고
    • Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses
    • Matsuzawa SI, Reed JC. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol Cell. 2001;7:915-926.
    • (2001) Mol Cell. , vol.7 , pp. 915-926
    • Matsuzawa, S.I.1    Reed, J.C.2
  • 45
    • 0043032524 scopus 로고    scopus 로고
    • Adenomatous polyposis coli (APC)-independent regulation of β-catenin degradation via a retinoid X receptor-mediated pathway
    • Xiao JH, Ghosn C, Hinchman C, et al. Adenomatous polyposis coli (APC)-independent regulation of β-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem. 2003;278: 29954-29962.
    • (2003) J Biol Chem. , vol.278 , pp. 29954-29962
    • Xiao, J.H.1    Ghosn, C.2    Hinchman, C.3
  • 46
    • 33644861713 scopus 로고    scopus 로고
    • Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis
    • Nishitani H, Sugimoto N, Roukos V, et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J. 2006;25:1126-1136.
    • (2006) EMBO J. , vol.25 , pp. 1126-1136
    • Nishitani, H.1    Sugimoto, N.2    Roukos, V.3
  • 47
    • 77955059513 scopus 로고    scopus 로고
    • Mechanisms and functions of p38 MAPK signalling
    • Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403-417.
    • (2010) Biochem J. , vol.429 , pp. 403-417
    • Cuadrado, A.1    Nebreda, A.R.2
  • 48
    • 30044444610 scopus 로고    scopus 로고
    • Role of MKK3 and p38 MAPK in cytokine-induced death of insulin-producing cells
    • Makeeva N, Myers JW, Welsh N. Role of MKK3 and p38 MAPK in cytokine-induced death of insulin-producing cells. Biochem J. 2006;393:129-139.
    • (2006) Biochem J. , vol.393 , pp. 129-139
    • Makeeva, N.1    Myers, J.W.2    Welsh, N.3
  • 50
    • 0028027308 scopus 로고
    • Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain
    • Treier M, Staszewski LM, Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain. Cell. 1994;78: 787-798.
    • (1994) Cell. , vol.78 , pp. 787-798
    • Treier, M.1    Staszewski, L.M.2    Bohmann, D.3
  • 51
    • 0035808433 scopus 로고    scopus 로고
    • Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression
    • Harrington RH, Sharma A. Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression. J Biol Chem. 2001;276:104-113.
    • (2001) J Biol Chem. , vol.276 , pp. 104-113
    • Harrington, R.H.1    Sharma, A.2
  • 52
    • 26244439281 scopus 로고    scopus 로고
    • Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment
    • King A, Lock J, Xu G, Bonner-Weir S, Weir GC. Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment. Diabetologia. 2005;48:2074-2079.
    • (2005) Diabetologia. , vol.48 , pp. 2074-2079
    • King, A.1    Lock, J.2    Xu, G.3    Bonner-Weir, S.4    Weir, G.C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.